6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Phylogenetic assay and pollen structure of few species of the genus amaranthus L.

Author Affiliations

  • 1Department of Botany, St.Teresa’s College, Ernakulam, Kerala-682011, India
  • 2Department of Botany, St.Teresa’s College, Ernakulam, Kerala-682011, India
  • 3Department of Botany, St.Teresa’s College, Ernakulam, Kerala-682011, India

Int. Res. J. Biological Sci., Volume 6, Issue (6), Pages 20-25, June,10 (2017)

Abstract

In Amaranthaceae, morphology based identification methods are usually time consuming and may sometimes lead to misidentification and always may not provide good resolution at the species levels. The phenotypic variability of the taxa may lead to misidentifications and creation of new false identity. DNA sequencing has been used to explain evolutionary relationships for more than 20 years in molecular systematics. The aims of DNA barcoding include identification of known specimens/species and new discovery of unknown plant species for enhancing taxonomy for the good of the science and betterment of society. The study basically emphasised on palynological studies and molecular profiling of Amaranthus species using universal markers rbcL and matK. The pollen morphology of the species of Amaranthus shows significant differences in polar length and equatorial diameter whereas the aperture was pantoporate with evenly distributed microspines. The phylogenetic assay showed bootstrap value of 96 and 98 for matK while 79 and 98 for rbcL dendrograms. All barcodes yield quality sequences.

References

  1. Townsend C.C. (1993)., Amaranthaceae. The families and genera of vascular plants. II Flowering plants., Dicotyledones. Spring Verlag, Berlin, 3(2), 70-91.
  2. de Jussieu A.L. (1789)., Genera Plantarum.secun dum ordines naturales disposita juxta methodum in Horto Regio Parisiensi exaratam., Paris: Apud Viduam Herissant et Theophilum Barrois, 498.
  3. Ventenat E.P. (1799)., Tableau Vegetal selon la Methode de Jussieu., 2, 253.
  4. Angiosperm Phylogeny Group (2003)., An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants., Bot. J. Linnean Soc., 141(4), 399-436.
  5. Townsend C.C. (1974)., Notes on Amaranthaceae2., Kew Bulletin, 29(3), 461-475.
  6. Ali M.A., Gyulai G., Hidvégi N., Kerti B., Al Hemaid F.M.A., Pandey A.K. and Lee J. (2014)., The changing epitome of species identification–DNA barcoding., Saudi J. Biolog. Sci., 21(3), 204-231.
  7. Keil M. and Griffin A.R. (1994)., Use of random amplified polymorphic DNA (RAPD) markers in the discrimination and verification of genotypes in Eucalyptus., Theor. Appl. Genet., 89(4), 442-450.
  8. McKinnon G.E., Vaillancourt R.E., Steane D.A. and Potts B.M. (2008)., An AFLP marker approach to lower-level systematics in Eucalyptus (Myrtaceae)., Am J Bot., 95(3), 368-380.
  9. Besnard G., Khadari B., Villemur P. and Bervillé A. (2000)., Cytoplasmic male sterility in the olive (Olea europaea L.)., Theor. Appl. Genet.,100(7), 1018-1024.
  10. Ochieng J.W., Steane D.A., Ladiges P.Y., Baverstock P.R., Henry R.J. and Shepherd M. (2007)., Microsatellites retain phylogenetic signals across genera in Eucalypts (Myrtaceae)., Genet Mol Biol., 30(4), 1125-1134.
  11. Ganal M.W., Polley A., Graner E.M., Plieske J., Wieseke R., Luerssen H. and Durstewitz G. (2012)., Large SNP arrays for genotyping in crop plants., Bioscience, 37(5), 821-828.
  12. Hebert P.D.N., Cywinska A., Ball S.L. and de Waard J.R. (2003)., Biological identifications through DNA barcodes., Proc. R. Soc. Lond. [Biol.], 270, 313-321.
  13. CBOL (2009)., Plant Working Group. A DNA barcode for land plants., Proc. Natl. Acad. Sci.,106(31), 12794-12797.
  14. Casiraghi M., Labra M., Ferri E., Galimberti A. and De Mattia F. (2010)., DNA barcoding: a six-question tour to improve users’ awareness about the method., Brief. Bioinformatics, 11, 440-453.
  15. Yessoufou K., Davies J.T., Maurin O., Kuzmina M., Schaefer H., Van der Bank M. and Savolainen V. (2013)., Large herbivores favour species diversity but have mixed impacts on phylogenetic community structure in an African savanna ecosystem., Ecology, 101(3), 614-625.
  16. Maurin O., Davies T.J., Burrows J.E., Daru B.H., Yessoufou K., Muasya M.A., Van der Bank M. and Bond W. (2014)., Savanna fire and the origins of “underground forests” of Africa., New Phytologist, 204, 201-214.
  17. Janzen D.H., Hallwachs W., Blandin P., Burns J.M., Cadiou J.M., Chacon I. and Dapkey T. (2009)., Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity., Mol. Ecol. Resour., 9, 1-26.
  18. Kress W.J., Wurdack K.J., Zimmer E.A., Weigt L.A. and Janzen D.H. (2005)., Use of DNA barcodes to identify flowering plants., Proc. Natl. Acad. Sci., 102(23), 8369-8374.
  19. Chase M.W., Cowan R.S., Hollingsworth P.M., ven den Berg C., Madrińán S. and Petersen G. (2007)., A proposal for a standardized protocol to barcode all land plants., Taxon., 56(2), 295-299.
  20. Taberlet P., Coissac E., Pompanon F., Gielly L., Miquel C. and Valentini A. (2007)., Power and limitations of the chloroplast trnL(UAA) intron for plant DNA barcoding., Nucleic Acids Res., 35(3).
  21. Kress W.J. and Erickson D.L. (2007)., A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region., PLoS ONE., 2(6), e508.
  22. China Plant BOL Group (2011)., Comparative analysis of a large dataset indicates that ITS should be incorporated into the core barcode for seed plants., Proc. Natl. Acad. Sci., 108(49), 19641-19646.
  23. CBOL Plant Working Group(2009)., A DNA barcode for land plants., Proc. Natl. Acad. Sci., 106(31), 12794-12797.
  24. Hoveka L.N., van der Bank M., Boatwright J.S., Bezeng B.S. and Yessoufou K. (2016)., The noncoding trnH-psbA spacer, as an effective DNA barcode for aquatic freshwater plants, reveals prohibited invasive species in aquarium trade in South Africa., S. Afr. J. Bot., 102, 208-216.
  25. Ashfaq M., Asif M., Anjum Z.I. and Zafar Y. (2013)., Evaluating the capacity of plant DNA barcodes to discriminate species of cotton (Gossypium: Malvaceae)., Mol Ecol Resour., 13(4), 573-582.
  26. Levin R.A., Wagner W.L., Hoch P.C., Nepokroeff M., Pires J.C., Zimmer E.A. and Sytsma K.J. (2003)., Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data., Am. J. Bot., 90, 107-115.
  27. Rieseberg L.H., Troy E.W. and Eric J.B. (2006)., The nature of plant species., Nature, 440, 524-527.
  28. Fazekas A.J., Kesanakurti P.R., Burgess K.S., Percy D.M., Graham S.W. and Barrett S.C.H. (2009)., Are plant species inherently harder to discriminate than animal species using DNA barcoding markers?., Molecular Ecology Resources, 9,130-139.
  29. Erdtman G. (1960)., The acetolysis method., Svensk bot. tidskr., 54, 561.
  30. Drummond A.J., Ashton B., Buxton S., Cheung M., Cooper A., Duran C., Field M., Heled J., Kearse M., Markowitz S., Moir R., Stones-Havas S., Sturrock S., Thierer T. and Wilson A. (2011)., Geneious Pro v5. 5.6., View Article PubMed/ NCBI Google Scholar.
  31. Hall T.A. (1999)., BioEdit: a user- friendly biological sequence alignment editor and analysis program for windows 95/98/NT., Nucl. Acids. Symp. Ser., 41, 95-98.
  32. Thompson J.D., Desmond G.H. and Toby J.G. (1994)., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice., Nucleic Acids Research., 22, 4673-4680.
  33. Kumar S., Stecher G. and Tamura K. (2016)., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets., Molecular Biology and Evolution, 33(7), 1870-1874.
  34. Borsch T. (1998)., Pollen types in the Amarantaceae. Morphology and evolutionary significance., Grana, 37(3), 129-142.
  35. Erdtman G. (1952)., Pollen Morphology and Taxonomy. Angiosperms., Almqvist and Wiksell, Stockholm.
  36. Roland F. (1971)., The detailed structure and ultra-structure of an acalymmate tetrad., Grana., 11, 41-44.
  37. Franssen Aaron S., Skinner Daniel Z., Al-Khatib Kassim and Horak Michael J. (2001)., Pollen morphological differences in Amaranthus species and interspecific hybrids., Weed Science, 49(6), 732-737.
  38. Prevost A. and Wilkinson M.J. (1999)., A new system of comparing PCR primer applied to ISSR fingerprinting of potato cultivars., Theor. Appl. Genet., 98, 107-112.
  39. Wang G., Mahalingam R. and Knap H.T. (1998)., C-A and G-A anchored simple sequence repeats (ASSRS) generated polymorphism in Soyabean, Glycine max(L.) Merr., Theor. Appl. Genet., 96(8), 1086-1096.
  40. Muller K. and Borsch T. (2005)., Phylogenetics of Amaranthaceae based on matk/trnk sequence dataevi dence from parsimony, likelihood and bayesian analyses., Annals of the Missouri Botanical Garden., 92(1), 66-102.
  41. Stoeckle M. (2003)., Taxonomy, DNA, and the Bar Code of Life., BioScience., 53(9), 796-797.
  42. Soltis D.E., Savolainen V. and Chatrou L. (2003)., Angiosperm phylogeny based on mat K sequence information., Am. J. Bot., 90(12), 1758-1776.
  43. Saitou N. and Nei M. (1987)., The neighbor-joining method: A new method for reconstructing phylogenetic trees., Molecular Biology and Evolution., 4(4), 406-425.
  44. Felsenstein J. (1985)., Confidence limits on phylogenies: An approach using the bootstrap., Evolution., 39, 783-791.