6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Statistical optimization of cellulase production in Pseudomonas spp and its application in bioethanol production

Author Affiliations

  • 1Department of Microbiology, Acharya Bangalore B School, Off Magadi road, Bangalore, Karnataka, India
  • 2Department of Biotechnology, Acharya Bangalore B School, Off Magadi road, Bangalore, Kaarnataka, India

Int. Res. J. Biological Sci., Volume 6, Issue (4), Pages 21-26, April,10 (2017)


Cellulolytic microorganism converts cellulose into monomeric units which can be used for production of valuable products. This study demonstrates the production of cellulase by Pseudomonas spp VC14. Strain Pseudomonas spp VC14 cellulase activity was increased by optimization of physicochemical parameters by Plackett-Burman statistical design. Optimization showed NH4Cl and FeSO4 as significant components influencing cellulose production. On optimization the production of cellulase increased 5.41 fold (1.84 U/ml) within 24 hrs compared to unoptimized medium. Simultaneous saccharification and fermentation of reducing sugars with Saccharomyces cerevisae showed 5.1% bioethanol production. Thus, the results of the present work clearly revealed that cellulose from strain Pseudomonas spp VC14 can efficiently be used for bioethanol production.


  1. Kalaiselvi V., Jayalakshmi S. and narayanan R.L. (2013)., Biofuel Production using Marine Microbes., Int. J. Curr. Microbiol. App. Sci., 2(5), 67-74.
  2. Dong F. (2007)., Food security and biofuels Development: The case of China., Briefing paper Centre for Agriculture and Rural Development lowa State university, 07-BP 52.
  3. Khan R.A., Nawaz A., Ahmed M., Khan M.R., Azam F.D., Ullah S., Sadullah F., Ahmad A., Shah M.S. and Khan, N. (2012)., Production of bioethanol through enzymatic hydrolysis of potato., Afr. J.Biotechnol., 11(25), 6739-6743.
  4. Shelke R.R., Jikare A., Deokar S., Jadhav S. and Chavan M. (2015)., Studies on ethanol production from studies on ethanol production from cellulolytic waste., World Journal of Pharmacy and Pharmaceutical Sciences, 4(12), 1216-1223.
  5. Vaithanomsat P., Chuichulchem S. and Apiwatanapiwat W. (2009)., Bioethanol production from enzymatically saccharified sunflower stalks using steam explosion as pretreatment., Proceedings of World Academy of Science, Engineering and Technology, 3(1), 88-91.
  6. Chakraborty N., Sarkar G.M. and Lahiri S.C. (2000)., Cellulose degrading capabilities of cellulolytic bacteria isolated from the intestinal fluids of the silver cricket., Environmentalist, 20(1), 9-11.
  7. Lu W.J., Wang H.T., Nie Y.F.,Wang Z.C., Huang D.Y., Qiu X.Y. and Chen J.C. (2004)., Effect of inoculating flower stalks and vegetable waste with lignocellulolytic microorganisms on the composting process., J. Environ. Sci. Health B, 39(5-6), 871-887.
  8. Nutt A., Sild V., Prtterson G. and Johansson G. (1998)., Progress curve as a means for functional classification of cellulases., Eur. J. Biochem., 258(1), 200- 206.
  9. Phitsuwan P., Tachaapaikoon C., Kosugi A., Mori Y., Kyu K.L. and Ratanakhanokchai K. (2010)., A cellulolytic and xylanolytic enzyme complex from an alkalother-moanarobacterium, Tepidimicrobium xylanilyticum BT14., J. Microbiol. Biotechnol., 20(5), 893-903.
  10. Sharma S. and Sumbali G. (2014)., Isolation and screening of cellulolytic fungal species associated with lower denomination currency notes, circulating in Jammu city (India)., International Journal of Recent Scientific Research., 5(3), 596-600.
  11. Kasana R.C., Salwan R., Dhar H., Dutt S. and Gulati A. (2008)., A rapid and easy method for the detection of microbial cellulases on agar plates using gram, Curr. Microbiol., 57(5), 503-507.
  12. Kim J.Y., Hur S.H. and Hong J.H. (2005)., Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH- 810., Biotechnol. Lett., 27(5), 313-316.
  13. Ali S., Ahmed S., Sheikh M.A., Hashm A.S., Rajoka M.I. and Jamil A. (2009)., Lysine production by L-homoserine resistant mutant of Brevibacterium flavum., J. Chem. Soc. Pak., 31(1), 97-102.
  14. Miller G.L. (1959)., Use of dinitrosalicyclic acid reagent for determination reducing sugar., Analytical Chem., 31(3), 426-428.
  15. Garrity G.M., Bell J.A. and Lilburn T.G. (2004)., Taxanomic Outline of the Prokaryotes. Bergey’s Manual of Systematic Bacteriology., 2nd Edition, Springer-Veriag, New York.
  16. Abdel-Mawgoud A.M., Aboulwafa M.M. and Abdel-Haleem H.N. (2008)., Optimization of surfactin production by Bacillus subtilis isolate BS5., Appl. Biochem. Biotechnol., 150(3), 305-325.
  17. Poznanski S. (1928)., The analysis of mixtures of ethyl alcohol, ethyl acetate, acetic acid and water., J. Am. Chem. Soc., 50(4), 981-988.
  18. Gomashe A.V., Gulhane P.A. and Bezalwar P.M. (2013)., Isolation and Screening of Cellulose Degrading Microbes from Nagpur Region Soil., Int. J. Life Sciences, 1(4), 291-293.
  19. Gupta P., Samant K. and Sahu A. (2012)., Isolation of cellulose degrading bacteria and determination of their cellulolytic potential., International Journal of Microbiology, 1-5 http://dx.doi.org/10.1155/2012/578925.
  20. Gohel H.R., Contractor C.N., Ghosh S.K. and Braganza V.J. (2014)., A comparative study of various staining techniques for determination of extra cellular cellulase activity on Carboxy Methyl Cellulose (CMC) agar plates., Int.J.Curr.Microbiol.App.Sci., 3(5), 261-266.
  21. Gopinath S.M., Shareef I., Latha A. and Ranjit S. (2014)., Isolation, screening and purification of cellulase from cellulase producing Klebsiella variicola RBEB3 (KF036184.1)., International Journal of Science and Research, 3(6),1398-1403.
  22. Thatoi H.N., Behera B.C., Dangar T.K. and Mishra R.R. (2012)., Microbial biodiversity in mangrove soil of Bhitarakanika, Odisha, India., International Journal of Environmental Biology, 2(2), 50-58.
  23. Tabao N.S.C. and Monsalud R.G. (2010)., Characterization and identification of high cellulose producing bacterial strains from philippine mangroves., Philipine journal of Systemetic Biology, 4, 13-20.
  24. Rastogi G., Muppidi G.L., Gurram R.N., Adhikari A., Bischoff K.M., Hughes H.R., Apel W.A., Bang S.S., Dixon D.J. and Sani R.K. (2009)., Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA., J. Ind. Microbiol. Biotechnol., 36 (4), 585-598.
  25. Ekperigin M.M. (2007)., Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp., Afr. J. Biotechnol., 6(1), 28-33.
  26. Talia P., Sede S.M., Campos E., Rorig M., Principi D., Tosto D., Hopp H.E., Grasso D. and Cataldi A. (2012)., Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes., Res. Microbiol., 163(3), 221-232.
  27. Palleroni N.J. (2010)., The Pseudomonas story., Environ. Microbiol., 12(6), 1377-1383.
  28. Yan-Ling L., Zhang Z., Wu M., Wu Y. and Feng J.X. (2014)., Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1., BioMed Research International, 1-13. http://dx.doi.org/10.1155/2014/512497
  29. Kumar D., Ashfaque M., Muthukumar M., Singh M. and Garg N. (2012)., Production and characterization of carboxymethylcellulase from Paenibacillus polymyxa using mango peel as substrate., J. Environ. Biol., 33(1), 81-84.
  30. Kalogeris E., Christakopoulos P., Katapodis P., Alexiou A., Vlachou S., Kekos D. and Marcis B.J. (2003)., Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes., Proc. Biochem., 38(7), 1099-1104.
  31. Vyas A., Vyas D., Vyas K.M. (2005)., Production and optimization of cellulases on pretreated groundnut shell by Aspergillus terreus AV49., J. Sci. Ind. Res., 64, 281-286.
  32. Balamurugan A., Jayanthi R., Nepolean P., Pallav R.V. and Premkumar R. (2011)., Studies on cellulose degrading bacteria in tea garden soils., Afr. J. Plant. Sci., 5(1), 22-27.
  33. Singh S., Moholkar V.S. and Goyal A. (2014)., Optimization of carboxymethylcellulase production from Bacillus amyloliquefaciens SS35., 3 Biotech, 4(4), 411-424.
  34. Pandey A., Tiwari S., Jadhav S.K. and Tiwari K.L. (2013)., Efficient microorganism for bioethanol production from lignocellulosic Azolla., Research Journal of Environmental Sciences, 8(6), 350-355.
  35. Narasimha G., Sridevi A., Buddolla V., Subhosh C.M. and Reddy R. (2006)., Nutrient effects on production of cellulolytic enzymes by Aspergillus niger., J. Biotechnol., 5(5), 472-476.
  36. Sasikumar E. and Viruthagiri T. (2010)., Simultaneous saccharification and fermentation of sugarcane bagasse in Kinetics and modeling., International Journal of Chemical and Biological Engineering, 4(1), 93-100.
  37. Karuppaiya M., Sasikumar E., Viruthagiri T. and Vijayagopal V. (2009)., Optimization of process conditions using response surface methodology for ethanol production from waste cashew apple by Zymomonas mobilis., Chemical Eng., 196(11), 1425-1435.