6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Gene transfer in eukaryotic cells: current applications and implications

Author Affiliations

  • 1College of Agri. and Environmental Sciences, School of Animal and Range Sciences, Post Box: 138, Haramaya University, Dire Dawa, Ethiopia
  • 2College of Natural and Computational Science; Department of Biology, Haramaya University, Ethiopia

Int. Res. J. Biological Sci., Volume 6, Issue (12), Pages 40-44, December,10 (2017)

Abstract

Gene transfer is indispensable to modify the genome of organisms and enhance their overall performance as compared to the average performance of their ancestors. Gene transfer in eukaryotic cells gives way to decipher the genotypes responsible for different traits, agricultural enhancement and therapeutic strategy. The three commonly used gene transfer methods are physical, chemical and biological based ones. It is reported that the application of transgenenesis in livestock agriculture comprises of increment of growth rate, milk production and composition, feed usage and carcass composition, disease resistance, enhanced reproductive and proli&

References

  1. Verma I. and Somia N. (1997)., Gene therapy: promises, problems and prospects., Nature, 389, 239-242.
  2. Tae K. and James H. (2010)., Mammalian cell transfection: the present and the future., Anal Bioanal Chem, 397(8), 3173-3178.
  3. Wurm F. (2004)., Production of recombinant protein therapeutics in cultivated mammalian cells., Nat Biotechnol, 22(11), 1393-1398.
  4. Patil S., Rhodes D. and Burgess D.J. (2005)., Biophysical characterization of anionic lipoplexes., BiochemicalEtBiophysicalActa, 1711, 1-11.
  5. Karmali P. and Chaudhuri A. (2007)., Cationic liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises., Medicinal Research Reviews, 27(5), 696-722.
  6. Thierry A. and Dritschilo A. (1992)., Intracellular availability of unmodified, phosphorothioates and liposomal encapsulated oligodeoxynucleotides for antisense activity., Nucleic Acids Res, 20(21), 5691-5698.
  7. Amax A. (2007)., Collaboration to Develop High-throughput Devices for Primary Cell Transfection.,
  8. Goodman R.M., Hauptli H., Crossway A. and Knauf V.C. (1987)., Gene transfer in crop improvement., Science, 236(4797), 48-54.
  9. Wheeler M.B. (2007)., Agricultural applications for transgenic livestock., Trends in Biotechnology, 25(5), 204-210.
  10. Uzogara S. (2000)., The impact of genetic modification of human foods in the 21st century: a review., Biotechnol Adv, 18(3), 179-206.
  11. Lorence A. and Verpoorte R. (2004)., Gene transfer and expression in plants., Methods Mol Biol, 267, 329-350.
  12. Robl J.M., Wang Z., Kasinathan P. and Kuroiwa Y. (2006)., Transgenic animal production and animal biotechnology., Theriogenology, 67, 127-133.
  13. Whitelaw C., King T. and Lilico S. (2008)., Production of transgenic farm animals by viral vector-mediated gene transfer., Reprod.Domest. Anim., 43(S2), 355-358.
  14. Brophy B., Smolenski G., Wheeler T., Wells D., L, Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein., Nature biotechnology, 21(2), 157-162.
  15. Bremel R.D., Yom H.C. and Bleck G.T. (1989)., Alteration of milk composition using molecular genetics., Journal of dairy science, 72(10), 2826-2833.
  16. Rothschild M.F., Jacobson C., Vaske D.A., Tuggle C.K., Short T.H., Sasaki S. and McLaren D.G. (1994)., A major gene for litter size in pigs., Proceedings of the Fifth World Congress Genet. Applied to Livestock Production, 21, 225-228.
  17. Osanto S., Brouwenstyn N., Vaessen N., Figdor C.G., Melief C.J.M. and Schrier P.I. (1993)., Immunization with Interleukin-2 Transfected Melanoma Cells. A Phase I–II Study in Patients with Metastatic Melanoma., University Hospital Leiden. Human gene therapy, 4, 323-330.
  18. Arienti F., Sulé-Suso J., Belli F., Mascheroni L., Rivoltini L., Melani C. and Parmiani G. (1996)., Limited antitumor T cell response in melanoma patients vaccinated with interleukin-2 gene-transduced allogeneic melanoma cells., Human gene therapy, 7(16), 1955-1963.
  19. Nabel G.J., Gordon D., Bishop D.K., Nickoloff B.J., Yang Z.Y., Aruga A. and Chang A.E. (1996)., Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA–liposome complexes., Proceedings of the National Academy of Sciences, 93(26), 15388-15393.
  20. Deshane J., Siegal G.P., Wang M., Wright M., Bucy R.P., Alvarez R.D. and Curiel D.T. (1997)., Transductional efficacy and safety of an intraperitoneally delivered adenovirus encoding an anti-erbB-2 intracellular single-chain antibody for ovarian cancer gene therapy., Gynecologic oncology, 64(3), 378-385.
  21. Stopeck A.T., Hersh E.M., Akporiaye E.T., Harris D.T., Grogan T., Unger E. and Stahl S. (1997)., Phase I study of direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7, in patients with metastatic melanoma., Journal of Clinical Oncology, 15(1), 341-349.
  22. Kun L.E., Gajjar A., Muhlbauer M., Heideman R.L., Sanford R., Brenner M. and Facchini S. (1995)., Stereotactic injection of herpes simplex thymidine kinase vector producer cells (PA 317- G1Tk1SvNa.7) and intravenous ganciclovir for the treatment of progressive or recurrent primary supratentorial pediatric malignant brain tumors., Hum Gene Ther, 6(9), 1231-1255.
  23. Haynes B. (1996)., HIV vaccines: where we are and where we are going., Lancet, 348, 933-937.
  24. Weber J. (1997)., Distinguishing between response to HIV vaccine and response to HIV., Lancet, 350, 230-231.
  25. Woolf T. (1998)., Therapeutic repair of mutated nucleic acid sequences., Nature Biotechnol, 16(4), 341-344.
  26. Feng M., Jackson W.H., Goldman C.K., Rancourt C., Wang M., Dusing S.K. and Curiel D.T. (1997)., Stable in vivo gene transduction via a novel adenoviral/retroviral chimeric vector., Nat Biotech, 15, 866-870.
  27. Anthony D., Pan Y., Wu S., Shen F. and Guo Y. (1998)., Ex vivo and in vivo IGF-I antisense RNA strategies for treatment of cancer in humans., Adv. Exp. Med. Biol., 451, 27-34. [PMC free article: PMC28332] [PubMed: 9391052]
  28. Blaese R., Culver K. and Anderson W. (1990)., The ADA human gene therapy clinical protocol., Hum Gene Ther, 1, 327-362.
  29. Rosenberg S.A., Aebersold P., Cornetta K., Kasid A., Morgan R.A., Moen R. and Merino M.J. (1990)., Gene transfer into humans: immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction., N Engl J Med., 323, 570-578.
  30. Mahvi D.M., Sondel P.M., Yang N.S., Albertini M.R., Schiller J.H., Hank J. and Logrono R. (1997)., Phase I/IB Study of Immunization with Autologous Tumor Cells Transfected with the GM-CSF Gene by Particle-Mediated Transfer in Patients with Melanoma or Sarcoma University of Wisconsin, Madison, Wisconsin., Human gene therapy, 8(7), 875-891.
  31. Nguyen D.M., Spitz F.R., Yen N., Cristiano R.J. and Roth J.A. (1996)., Gene therapy for lung cancer: enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer., The Journal of thoracic and cardiovascular surgery, 112(5), 1372-1377.
  32. Felgner P.L., Gadek T.R., Holm M., Roman R., Chan H.W., Wenz M. and Danielsen M. (1987)., Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure., Proceedings of the National Academy of Sciences, 84(21), 7413-7417.
  33. Pleyer U. and Dannowski H. (2002)., Delivery of genes via liposomes to corneal endothelial cells., Drug News Perspect, 15(5), 283-289.
  34. Huang L. and Li S. (1997)., Liposomal gene delivery: A complex package., Nat.Biotechnol., 15, 620-621.
  35. Hug P. and Sleight R.G. (1991)., Liposomes for the transformation of eukaryotic cells., BiochimBiophys Acta, 1097(1), 1-17.
  36. Zhu N., Liggitt D., Liu Y. and Debs R. (1993)., Systemic gene expression after intravenous DNA delivery into adult mice., Science, 26, 209-211.
  37. Metselaar J.M., Bruin P., de Boer L.W., de Vringer T., Snel C., Oussoren C. and Hennink W.E. (2003)., A novel family of L-amino acid-based biodegradable polymer− lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity., Bioconjugate chemistry, 14(6), 1156-1164.
  38. Kim J.K., Choi S.H., Kim C.O., Park J.S., Ahn W.S. and Kim C.K. (2003)., Enhancement of polyethylene glycol (PEG)‐modified cationic liposome‐mediated gene deliveries: effects on serum stability and transfection efficiency., Journal of pharmacy and pharmacology, 55(4), 453-460.
  39. Immordino M.L., Dosio F. and Cattel L. (2006)., Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential., International journal of nanomedicine, 1(3), 297-315.
  40. Brem G., Brenig B., Kräusslich H., Müller M., Springmann K. and Winnacker E. (1988)., Gene transfer by DNA microinjection of growth hormone genes in pigs., Eleventh International Congress on Animal Reproduction and Artificial Insemination. Dublin.
  41. Liu Z., Cashion L.M. and Twu J.J. (1997)., A systematic comparison of relative promoter/enhancer activities in mammalian cell lines., Analytical biochemistry, 246(1), 150-152.
  42. Fedele M., Pentimalli F., Baldassarre G., Battista S., Klein-Szanto A.J., Kenyon L. and Viglietto G. (2005)., Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas., Oncogene, 24(21), 3427-3435.
  43. Stallwood Y., Briend E., Ray K.M., Ward G.A., Smith B.J., Nye E. and McKenzie G.J. (2006)., Small interfering RNA-mediated knockdown of notch ligands in primary CD4+ T cells and dendritic cells enhances cytokine production., The Journal of Immunology, 177(2), 885-895.