9th International Science Congress (ISC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Comparison and Phylogenetic Analysis of HIV retroviral Gag Poly Protein Precursors

Author Affiliations

  • 1 Faculty of Biological Sciences, Department of Biotechnology, University of South Asia, Lahore, Pakistan

Int. Res. J. Biological Sci., Volume 5, Issue (9), Pages 32-37, September,10 (2016)

Abstract

The human immunodeficiency virus type I (HIV-1) is a member of retrovirus family, initially synthesized as the central and core domain of the Gag polyprotein. These polyprotein precursors are produced from the unspliced genomic RNA on free ribosomes within the cytoplasm. The entire process of membrane binding, particle assembly and maturation may occur sometimes in the absence of certain viral envelope proteins. Gag molecules generally gather and capture the viral RNA. After this, it migrates towards the inner cell membrane and assemble into immature viral particles of the cell. They are mainly involved in assembly of virus like particles. Analysis of retroviruses including HIV, SIV and their precursors reveals new insights to study their proper functioning and mechanism of action. In this study, sequence alignments were performed to analyze the similarity and phylogenetic analysis helped to know the evolutionary relationships among these protein precursors. For, this various bioinformatics tools was used for analysis which will help to study their function and also the structural level predictions.

References

  1. Apetrei C., Robertson D.L. and Marx P.A. (2004)., The history of SIVS and AIDS: epidemiology, phylogeny and biology of isolates from naturally SIV infected non-human primates (NHP) in Africa., Front Biosci., 10, 225-254, doi: 10.2741/1154.
  2. Locatelli S. and Peeters M. (2012)., Cross-species transmission of simian retroviruses: how and why they could lead to the emergence of new diseases in the human population., Aids., 10, 659-673. doi: 10.1097/QAD.0b013 e328350fb68.
  3. Gao F., Bailes E, Robertson D.L., Chen Y., Rodenburg C.M., Michael S.F., Cummins L.B., Arthur L.O., Peeters M., Shaw G.M., Sharp P.M. and Hahn B.H. (1999)., Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes., Nature, 10, 436-441. doi: 10.1038/17130.
  4. Hirsch V.M., Olmsted R.A., Murphey-Corb M., Purcell R.H. and Johnson P.R. (1989)., An African primate lentivirus (SIVsm) closely related to HIV-2., Nature., 10, 389-392. doi: 10.1038/339389a0.
  5. Van Heuverswyn F., Li. Y., Neel C., Bailes E., Keele B.F., Liu W., Loul S., Butel C., Liegeois F., Bienvenue Y., Ngolle E.M., Sharp P.M., Shaw G.M., Delaporte E., Hahn B.H. and Peeters M. (2006)., Human immunodeficiency viruses: SIV infection in wild gorillas., Nature., 10, 164, doi: 10.1038/444164a.
  6. Bibollet-Ruche F., Galat-Luong A., Cuny G., Sarni-Manchado P., Galat G., Durand J.P., Pourrut X. and Veas F. (1996)., Simian immunodeficiency virus infection in a patas monkey (Erythrocebus patas): evidence for cross-species transmission from African green monkeys (Cercopithecus aethiops sabaeus) in the wild., J Gen Virol., 10, 773-781, doi: 10.1099/0022-1317-77-4-773.
  7. Jin MJ, Rogers J, Phillips-Conroy JE, Allan JS, Desrosiers RC, Shaw GM, Sharp PM and Hahn BH. (1994)., Infection of a yellow baboon with simian immunodeficiency virus from African green monkeys: evidence for cross-species transmission in the wild., J Virol., 10, 8454-8460.
  8. Souquiere S., Bibollet-Ruche F., Robertson D.L., Makuwa M., Apetrei C., Onanga R., Kornfeld C., Plantier J.C., Gao F., Abernethy K., White L.J., Karesh W., Telfer P., Wickings E.J., Mauclere P., Marx P.A., Barre-Sinoussi F., Hahn B.H., Muller-Trutwin M.C. and Simon F. (2001)., Wild Mandrillus sphinx are carriers of two types of lentivirus., J Virol., 10, 7086-7096, doi: 10.1128/JVI.75.15.
  9. Beer B.E., Foley B.T., Kuiken C.L., Tooze Z., Goeken R.M., Brown C.R., Hu J., St. Claire M., Korber B.T. and Hirsch V.M. (2001)., Characterization of novel simian immunodeficiency viruses from red-capped mangabeys from Nigeria (SIVrcmNG409 and -NG411)., J Virol., 10, 12014-12027, doi: 10.1128/JVI.75.24.
  10. Bailes E., Gao F., Bibollet-Ruche F., Courgnaud V., Peeters M., Marx P.A., Hahn B.H. and Sharp P.M. (2003)., Hybrid origin of SIV in chimpanzees., Science., 10, 1713, doi: 10.1126/science.1080657.
  11. Bibollet-Ruche F., Bailes E., Gao F., Pourrut X., Barlow K.L., Clewley J.P., Mwenda J.M., Langat D.K., Chege G.K., McClure H.M., Mpoudi-Ngole E., Delaporte E., Peeters M., Shaw G.M., Sharp P.M. and Hahn B.H. (2004)., New simian immunodeficiency virus infecting De Brazza’s monkeys (Cercopithecus neglectus): evidence for a cercopithecus monkey virus clade., J Virol., 10, 7748-762, doi: 10.1128/JVI.78.14.
  12. Corbet S., Muller-Trutwin M.C., Versmisse P., Delarue S., Ayouba A., Lewis J., Brunak S., Martin P., Brun-Vezinet F., Simon F., Barre-Sinoussi F. and Mauclere. P. (2000)., Env sequences of simian immunodeficiency viruses from chimpanzees in Cameroon are strongly related to those of human immunodeficiency virus group N from the same geographic area., J. Virol., 74, 529-534.
  13. Gao F., Bailes E., Robertson D.L., Chen Y., Rodenburg C. M., Michael S.F., Cummins L.B., Arthur L.O., Peeters M., Shaw G.M., Sharp P.M. and Hahn B.H. (1999)., Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes., Nature, 397, 436-441.
  14. Korber B., Muldoon M., Theiler J., Gao F., Gupta R., Lapedes A., Hahn B.H., Wolinsky S. and Bhattacharya T. (2000)., Timing the ancestor of the HIV-1 pandemic strains., Science, 288, 1789-1796.
  15. Sharp P.M., Bailes E., Gao F., Beer B.E., Hirsch V.M. and Hahn B.H. (2000)., Origins and evolution of AIDS viruses: estimating the time-scale., Biochem. Soc. Trans., 28, 275-282.
  16. Zhu T., Korber B.T.K., Nahmias A.J., Hooper E., Sharp P.M. and Ho. D.D. (1998)., An African HIV-1 sequence from 1959 and implications for the origin of the epidemic., Nature, 391, 594-597.
  17. Christensen A.M., M.A. Massiah, Turner B.G., Sundquist W.I. and Summers M.F. (1996)., Three-dimensional structure of the HTLV-II matrix protein and comparative analysis of matrix proteins from the different classes of pathogenic human retroviruses., J. Mol. Biol., 264, 1117-1131.
  18. Conte M.R. and Matthews S. (1998)., Retroviral matrix proteins: a structural perspective., Virology, 246, 191-198.
  19. Dalton A.K., Ako-Adjei D., Murray P.S., Murray D., Vogt V.M. (2007)., Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 Gag MA domain., J. Virol., 81, 6434-6445.
  20. Heidecker G., Lloyd P.A., Soheilian F., Nagashima K. and Derse D. (2007)., The role of WWP1-Gag interaction and Gag ubiquitination in assembly and release of human T-cell leukemia virus type 1., J. Virol., 81, 9769-9777.
  21. Murray P.S. et. al. (2005)., Retroviral matrix domains share electrostatic homology: models for membrane binding function throughout the viral life cycle., Structure (Camb.), 13, 1521-1531.