6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Fundamental Idea of Evolutionary Relationships among Cyanobacteria using 16s RRNA and RBCL Gene Sequences

Author Affiliations

  • 1Department of Botany, Mizoram University, Aizawl-796004, Mizoram, India

Int. Res. J. Biological Sci., Volume 5, Issue (8), Pages 7-16, August,10 (2016)


Cyanobacteria are aquatic and autotrophic organisms. They are found all over the world, generally in terrestrial, freshwater and marine habitats. But the blooms are found in fresh water. 16S rRNA is used for identification of diversity of prokaryotic organisms as well as other organisms. So it helps in the study of phylogeny among them. Here we have collected 16S gene sequences of 122 cyanobacterial species determine the phylogeny among them. rbcL (Ribulose-biphosphate carboxylase/oxygenase) is also a gene which is widely sequenced from numerous plant taxa and the resulting database is aided in plant physiology. So we have collected rbcL gene sequences of 46 cyanobacterial species and determine the evolutionary relationship among them. The evolutionary relationships between all organisms are called phylogeny and are represented by phylogenetic tree. Phylogenetic tree not only give the relationship among the species but also gives the proper position of the species in cyanobacterial classification.


  1. Schirrmeister B. E., Baracaldo P. S. and Wacey D. (2016)., Cyanobacterial evolution during the Precambrian., Int. J. Astrobiol., 15(3), 187-204. http://dx.doi:10.1017/S1 473550415000579.
  2. Paul J. H., Cazares L. and Thurmond J. (1990)., Amplification of the rbcL Gene from Dissolved and Particulate DNA from Aquatic Environments., Appl. Environ. Microbiol., 56(6), 1963-1966.
  3. Pruitt K. D., Tatusova T., Brown G. R. and Maglott D. R. (2012)., NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy., Nucleic. Acids. Res., 40, D130–D135. http://dx.doi:10.1093/nar/gkr1079.
  4. Nelissen B., Peer Y. V., Wilmotte A. and Wachter R. D. (1995)., An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences., Mol. Biol. Evol., 12(5), 1166-1173.
  5. O’Neill S. C., Giordano R., Colbert A. M. E., Karr T. L. and Robertson H. M. (1992)., 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects., Proc. Natl. Acad. Sci. U. S. A., 89(7), 2699-2702.
  6. Kitts P. A., Church D. M., Choi J., Hem V., Smith, R., Tatusova T., Thibaud-Nissen F., DiCuccio M., Murphy T. D., Pruitt K. D. and Kimchi A. (2016)., Assembly: a resource for assembled genomes at NCBI., Nucleic. Acids. Res., 44(D1), D73-D80. http://dx.doi: 10.1093/nar/gkv1226.
  7. Tamura K., Kumar S., Peterson D., Peterson N., Stecher G. and Nei M. (2011)., MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods., Mol. Biol. Evol., 28(10), 2731-2739.
  8. Blank C. E. and Sanchez-Baracaldo P. (2010)., Timing of morphological and ecological innovations in the cyanobacteria–a key to understanding the rise in atmospheric oxygen., Geobiology., 8(1), 1-23. http://dx.doi: 10.1016/j.tim.2009.05.010.
  9. Logares R., Bråte J., Bertilsson S., Clasen J. L., Shalchian-Tabrizi K. and Rengefors K. (2009)., Infrequent marine–freshwater transitions in the microbial world., Trends. Microbiol., 17(9), 414–422, http://dx. doi: 10.1016/j.tim.2009.05.010.
  10. Castresana J. (2000)., Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis., Mol. Bio. Evol., 17(4), 540-552.
  11. Halekoh U. and Højsgaard S. (2014)., A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models – the R package pbkrtest., J. Stat. Softw., 59(9), 1-32, http://dx.doi:10.18637/jss.v059.i09.
  12. Marchesi J. R., Sato T., Weightman A. J., Martin T. A., Fry J. C., Hiom S. J. and Wade W. G. (1998)., Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA., Appl. Environ. Microbiol., 64(2), 795-799.
  13. Tang E. P. Y., Vincent W. F. and Tremblay R. (1997)., Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature?., J. Phycol., 33, 171-181. http:// dx.doi: 10.1111/j.0022-3646.1997.00171.x.
  14. Baldauf S. L. and Palmer J. D. (1990)., Evolutionary transfer of the chloroplast tufA gene to the nucleus., Nature., 344(6263), 262-265.
  15. Tomotani A., Knoll A. H., Cavanaugh C. M. and Ohno T. (2006)., The evolutionary diversification of cyanobacteria: Molecular phylogenetic and paleontological Perspectives., Proc. Natl. Acad. Sci. U. S. A., 103(14), 5442-5447.http://dx. doi: 10.1073/pnas.0600999103.
  16. Gielly L. and Taberlet P. (1994)., The use of chloroplast DNA to resolve plant phylogenesis: Noncoding versus rbcl sequences., Mol. Bio. Evol., 11(5), 769-777.
  17. Basak P., Pramanik A., Sengupta S., Nag S., Bhattacharyya A., Roy D., Pattanayak R., Ghosh A., Chattopadhyay D. and Bhattacharyya M. (2016)., Bacterial diversity assessment of pristine mangrove microbial community from Dhulibhashani, Sundarbans using 16S rRNA gene tag sequencing., Elsevier., 7, 76-78, .http://dx. doi:10.1016/j. gdata.2015.11.030.
  18. Donoghun M. J., Olmstead R.G., Smith J.F. and Palmer J.D. (1992)., Phylogenetic relationship of Dipsacales based on rbcL sequences., Ann. Missouri Bot. Gard., 79(2), 333-345. http://dx.doi.org/10.2307/2399772.
  19. Bergsland K. J. and Haselkorn R. (1991)., Evolutionary relationship among eubacteria, cyanobacteria and chloroplasts: Evidence from the rpoC1 gene of Anabaena sp. strain 7120., J. Bacteriol., 173(11), 3446-3455.
  20. Delwiche C.F., Kuhsel M. and Palmer J. D. (1995)., Phylogenetic analysis of tuf A sequence indicates a cyanobacterial origin of all plastids., Mol. Phylogenet. Evol., 4(2), 110-128, http://dx.doi: 10.1006/mpev.1995 .1012.
  21. Hasebe M., Omori T., Nakazawa M., Sano T. and Kato M. (1994)., rbcL gene sequences provide evidence for the evolutionary lineases of leptosporanglate frens., Proc. Natl. Acad Sci. U.S.A., 91(12), 5730-5734.
  22. Deutsch C. A., Tewksbury J. J., Huey R. B., Sheldon K. S., Ghalambor C. K., Haak D. C. and Martin P. R. (2008)., Impacts of climate warming on terrestrial ectotherms across latitude., Proc. Natl. Acad Sci. U.S.A., 105(18), 6668-6672.http://dx.doi: 10.1073/pnas.0709472105.
  23. Pichard S. L., CampbelL L. and Paul J. H. (1997)., Diversity of the Ribulose Bisphosphate Carboxylase/Oxygenase form I Gene (rbcL) in Natural Phytoplankton Communities., Appl. Environ. Microbiol., 63(9), 3600-3606.
  24. Kunin V., Goldovsky L., Darzentas N. and Ouzounis C. A. (2005)., The net of life: reconstructing the microbial phylogenetic network., Genome Res., 15(7) 954-959.
  25. Giovannoni S. J., Turner S., Olsen G. J., Barns S., Lane D. J. and Pace N. R. (1988)., Evolutionary relationships among cyanobacteria and green chloroplast., J. Bacteriol., 170(8), 3584-3592.
  26. Wheeler D. L., Barrett T., Benson D. A., Bryant S. H., Canese K., Chetvernin V., Church D. M., DiCuccio M., Edgar R., Federhen S., Geer L. Y., Kapustin Y., Khovayko O., Landsman D., Lipman D. J., Madden T. L., Maglott D. R., Ostell J., Miller V., Pruitt K. D., Schuler G. D., Sequeira E., Sherry S. T., Sirotkin K., Souvorov A., Starchenko G., Tatusov R. L., Tatusova T. A., Wagner L. and Yaschenko E. (2015)., Database resources of the National Center for Biotechnology Information., Nucleic Acids Res., 35, D5– D12. http://dx.doi: 10.1093/nar/gks1189.
  27. Thomas M. K., Kremer C. T. and Litchman E. (2016)., Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits., Global. Ecol. Biogeogr., 25,75-86.http://dx.doi: 10.1111/geb.12387.
  28. Swingly W. D., Blankenship R. E. and Raymond J. (2008)., Integrating markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families., Mol. Biol. and Evol., 25 (4), 43-654.http://dx.doi:10.1093/molbev/msn034.
  29. Boczar B. A., Delaney T. P. and Cattolico R. A. (1989)., Gene for the ribulose-1,5-biphosphate carboxylase small subunit protein of the marine chromatophyte Olisthodiscus luteus is similar to that of a chemoautotrophic bacterium., Proc. Natl. Acad. Sci. U. S. A., 86(13), 4996-4999.
  30. Deng S., Wang C., Philippis R. D., Zhou X., Ye C. and Chen L.(2016)., Use of quantitative PCR with the chloroplast gene rps4 to determine moss abundance in the early succession stage of biological soil crusts., Springer., 52(5), 595-599.http://dx.doi: 10.1007/s00374-016-1107-7.
  31. Mojzsis S. J., Arrhenius G., McKeegant K. D., Harrison T. M., Nutman A. P. and Friend C. R. L. (1996)., Evidence for life on Earth before 3,800 million years ago., Nature., 384(7), 55-59.
  32. Sievers F., Wilm A., Dinean D., Gibson T. J., Karplus K., Li W., Lopez R., Mcwilliam H., Remmert M., Soding J., Thompson J. D. and Higgins D.G. (2011)., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega., Mol. Syst. Biol., 1-6. http://dx.doi: 10.1038/msb.2011.75.