6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Metabolic Impact of Selected Minor Millets Fed Experimental Menopause Induced Rats

Author Affiliations

  • 1Department of Biochemistry, Navarasam Arts & Science College, Arachalur, Erode (DT)-638101, TN, India
  • 2Department of Biochemistry, Bharathidasan College of Arts & Science, Ellispettai, Erode (DT)-638116, TN, India

Int. Res. J. Biological Sci., Volume 5, Issue (6), Pages 43-51, June,10 (2016)

Abstract

Menopause is nothing but the cessation of menstrual activity which is accompanied by lower levels of estrogen and which gradually leads to weight gain. Postmenopausal weight gain is an alarm for women’s health which leads to hyperlipidemia and glucose intolerance. These events further lead to lifestyle-related diseases such as diabetes mellitus, arteriosclerosis, hypertension and metabolic syndrome. The aim of the present research was to study the effect of four less explored minor millets (Paspalum scrobiculatumL., Panicum sumatrense Rothex Roem. and Schult, Eichinochola frumentacea Link and setaria italic(L.) P. Beauv.) which are less exploited for research on the metabolic profile of Ovariectomized rats. Twelve female wistar albino rats were grouped into four and only one group was fed with the feed prepared from the flour of the four minor millets mixture. The study was carried for 3 months and the body weight was measured weekly and blood sugar, HbA1c and lipid profile were measured monthly, whereas the other biochemical parameters were measured at the end of the experiment. The minor millets fed group showed significant (p‹ 0.05) improvement in the lipid profile and blood glucose whereas the body weight was under control. Thus the minor millets proved to be effective against the pathogenic condition of metabolic syndrome at the Menopausal stage.

References

  1. Sachdeva A., Seth S., Khosla A.H., Sachdeva S. (2005)., Study of some common biochemical bone turnover markers in postmenopausal women., Indian Journal of Clinical Biochemistry; 20(1), 131-134.
  2. O’Sullivan A.J., Martin A., Brown M.A. (2001)., Efficient fat storage in premenopausal women and in early pregnancy: A role for estrogen., J Clin Endocrinol Metab, 86, 4951-6.
  3. Mesch V.R., Boero L.E., Siseles N.O., Royer M., Prada M., Sayegh F. et al. (2006)., Metabolic syndrome throughout the menopausal transition: Influence of age and menopausal status., Climacteric; 9, 40-8.
  4. Lejsková M., Alušík S., Suchánek M., Zecová S., Piha J. (2011)., Menopause: Clustering of metabolic syndrome components and population changes in insulin resistance., Climacteric; 13, 83-91.
  5. Dr. Rachel Talton. (2016)., Presidential address IMSCON -001., Personal communication, http://www. indianmenopausesociety.org/
  6. K Krishnaswamy, B Sesikeran and A Laxmaiah. (2011)., Dietary guidelines for Indians-A manual., National institute of nutrition, Hyderabad, India, 1.
  7. Backstrom T. (1995)., Symptoms related to the menopause and sex steroid treatments., Ciba Found Symp, 191, 171-180.
  8. Achaya K.T. (1994)., Indian food: A historical companion., Oxford University Press, Delhi.
  9. WHO (2000)., Obesity: Preventing and Managing the Global Epidemic., Report of a WHO Consultation. WHO Technical Report Series No.894. Geneva, Switzerland: WHO. http://www.ncbi.nlm.nih.gov/pubmed/11234459
  10. Popkin B.M. (2001)., The nutrition transition and obesity in the developing world., Journal of Nutrition, 131(3), 871S–3S.
  11. Karthikeyan M., (2014)., Small millets, big potential: diverse, nutritious and climate smart., Policy Briefing.
  12. Anderson R.A. (1982)., Water absorption and solubility and amylograph characteristics of roll-cooked small grain products., Cereal Chemistry, 59, 265– 269.
  13. Pathak P., Srivastava S. (1998)., Development and evaluation of food formulation based on foxtail millet for their suitability in diabetic diet., Proceedings of Nutritional Society of India, NIN, 59.
  14. Muthusami S., Ramachandran I., Muthusamy B., et al. (2005)., Ovariec-tomy induces oxidative stress and impairs bone antioxidant system in adult rats., Clin Chim Acta, 360, 81–6.
  15. Lee S.D., Kuo W.W. and Ho Y.J., et al. (2008)., Cardiac Fas-dependent and mitochondria-dependent apoptosis in ovariectomized rats., Matu- ritas; 61, 268–77.
  16. Williams C.M. (2004)., Lipid Metabolism in Women., Proc Nutr Soc; 63(1), 153–60.
  17. Agarwal A., Gupta S., Sharma R.K. (2005)., Role of oxidative stress in female reproduction., Reprod Biol Endocrinol., 3, 28.
  18. Saadat Parhizkar, Latiffa A. Latiff, Sabariah A.Rahman and Mohammad A. Dollah (2011)., Preventive effect of Nigella sativa on metabolic syndrome in menopause induced rats., Journal of Medicinal Plants Research, 5(8), 1478-1484.
  19. Yongzhong Z., Longjiang Y., Mingzhang A., Wenwen J. (2006)., Effect of ethanol extract of Lepidium meyenii Walp. On osteoporosis in ovariectomized rat., Journal of Ethnopharmacology
  20. Zhen-Guo. (2009)., The osteoprotective effect of Radix Dipsaci extract in ovariectomized rats., Journal of Ethnopharmacology, 123, 74–81.
  21. Kunst A., Drager B., Ziegenhorn J. In: Bergmeyer (1984)., Methods of Enzymatic Analysis., 3rd ed. volume VI, Metabolites 1: Carbohydrates, 163-172.
  22. Tietz N.W. (1995)., Clinical Guide to Laboratory Tests., 3rd ed. Philadelphia, Pa: WB Saunders Company, 268-273
  23. Eross J., Kreutzman D., Jimenez M., Keen R., Rogers S., Cowell C., Vines R. and Silink M. (1984)., Colorimetric measurement of glycosylated protein in whole blood cells plasma and dried blood., Ann. Clin. Biochem., 21 519–522.
  24. Roeschlau P, Bernt E, Gruber W. (1974)., Enzymatic determination of total cholesterol in serum., Z Klin Chem Klin Biochem., 12(5), 226.
  25. Allain C.C., Poon L.S., Chan C.S., Richmond W. and Fu P.C. (1974)., Enzymatic determination of total serum cholesterol., Clin Chem., 20(4), 470-5.
  26. Wahlefeld A.W. and Bergmeyer H.U., eds. (1974)., Methods of Enzymatic Analysis., 2nd English ed. New York, NY: Academic press Inc, 1831.
  27. Sugiuchi H., Uji Y., Okabe H. and Irie T. et al. (1995)., Direct measurement of High-Density Lipoprotein Cholesterol in serum with polyethylene glycol-Modified Enzymes and Sulfated α-Cyclodextrin., Clin Chem., 41, 717-723.
  28. Matsuzaki Y., Kawaguchi E. and Morita Y. (1996)., Evaluation of two kinds of reagents for Direct Determination of HDL-Cholesterol., J Anal Bio-Sc., 19, 419-427.
  29. Friedwald W.T., Levy R.I., Fredrickson D.S., (1972)., Estimation of the concentration of LDL-cholesterol in plasma without the use of the preparative ultracentrifuge., Clin. Chem., 18, 499–502.
  30. Suanarunsawat T., Ayutthaya W.D.N., Songsak T., Rattanama haphoom J. (2009)., Anti-lipidemic actions of essential oil extracted from Ocimum sanctum L. leaves in rats fed with high cholesterol diet., J. Appl. Biomed. 7, 45–53.
  31. Ohkawa H., Ohishi Ν. and Yagi Κ. (1979)., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction., Anal. Biochem, 95, 351-358.
  32. Zahra Jouyandeh, Farnaz Nayebzadeh, Mostafa Qorbani and Mojgan Asadi. (2013)., Metabolic syndrome and menopause., Journal of Diabetes & Metabolic Disorders, 12, 1.
  33. You T., Ryan A.S., Nicalas B.J. (2014)., The Metabolic syndrome in Obese Postmenopausal Women: Relationship to body composition visceral fat and inflammation., JCEM, 89, 5517‑22.
  34. Tansey G., Hughes C.L.J., Cline J.M., Krummer A., Walmer D.K., Schmoltzer S. (1998)., Effects of dietary soybean estrogens on the reproductive tract in female rats., Proc. Soc. Exp. Biol. Med., 217, 340-344.
  35. Tollba AAH, Shabaan SAM, Abdel MMAA (2010)., Effects of using aromatic herbal extract and blended with organic acids on productive and physiological performance of poultry 2 – the growth during cold winter stress., Egypt. Poult. Sci., 30(I), 229-248.
  36. Liu M., Xu X., Rang W., Li Y., Song Y. (2004)., Influence of ovariectomy and 17?-estradiol treatment on insulin sensitivity, lipid metabolism and post-ischemic cardiac function., Int. J. Cardiol., 97(3), 485-493.
  37. Sarkaki A., Amani R., Badavi M., Safahani M., Aligholi H. (2008)., Effect of Ovariectomy on Reference Memory Version of Morris Water Maze in Young Adult Rats., Iranian Biomed. J. (IBJ), 12(2), 123-128.
  38. Bjor RN Andersson, Lars-Ake Mattsson, Lennart Hahn, Permarin, Leif Lapidus, Goran Holm, Bengt-Ake Bengtsson, and Per Bjorntorp. (1997)., Estrogen replacement therapy decreases Hyperandrogenicity and improves glucose homeostasis and plasma lipids in postmenopausal women with Noninsulin-dependent diabetes mellitus., The Journal of Clinical Endocrinology & Metabolism, 82(2).
  39. H.E. Brussaard, J.A.Gevers Leuven, M.Fro¨ lich, C. Kluft, H.M. J.Krans. (1997)., Short-term oestrogen replacement therapy improves insulin resistance, lipids and fibrinolysis in postmenopausal women with NIDDM., Diabetologia,40, 843–849.
  40. Alberti K., Press C.M., (1982)., The biochemistry and the complications of diabetes mellitus., H. Keen, J. Jarrett (Eds.), Complications of Diabetes, vol. 43, Edward Arnold Ltd., London, 231– 270.
  41. Pari L. and Saravanan G., (2002)., Antidiabetic effect of Cogentdb, a herbal drug in alloxan-induced diabetes mellitus, Comp., Biochem. Physiol. C: Phar- macol. Toxicol. Endocrinol. 131, 19–25.
  42. Abdoljalal Marjani and Sedigheh Moghasemi. (2012)., The Metabolic Syndromeamong Postmenopausal Women in Gorgan., Hindawi Publishing Corporation International Journal of Endocrinology Volume, Article ID 953627, 6 pages doi:10.1155/2012/953627.
  43. Torng P.L. (2000)., Effect of menopause and obesity on lipid profiles in middle-aged Taiwanese women: the Chin-Shan Community Cardiovascular Cohort Study., Atherosclerosis, 153, 413-421.
  44. Parinita K., KV Madhuri and V Sreekanth. (2012)., Study of serum lipid profile in individuals residing in and around Nalgonda., Int J pharm Bio Sci., 2, 110-116.
  45. Wilson P.W.F., Abbott R.D., Castelli W.P. (1988)., High density lipoprotein cholesterol and mortality. The Framingham Heart Study., Arteriosclerosis; 8, 737–741. Downloaded from http://atvb.ahajournals.org/ at VA MED CTR BOISE on May 30, 2016
  46. Pieters M.N., Schouten D., and T.J.C. Van Berkel, (1994)., Invitro and invivo evidence for the role of HDL in reverse cholesterol transport., Biochim. Biophys. Acta, 1225, 125-134 (1994).
  47. Rhoads G.G., Gulbrandse C.L. and Kagan A. (1976)., Serum lipoproteinsandcoro-nary artery disease in a population study of Hawaiian Japanese men., New Engl. J. Med., 294, 293–298.
  48. Fait T., Malkova J. and Zivny J. (2002)., Effect of hormone replacement therapy on the cardiovascular system., Ceska. Gynekol., 67(5), 285– 293.
  49. Liu M., Xu X., Rang W., Li Y., Song Y. (2004)., Influence of ovariectomy and 17?-estradiol treatment on insulin sensitivity, lipid metabolism and post-ischemic cardiac function., Int. J. Cardiol., 97(3), 485-493.
  50. Babiker F. and Leon J. (2002)., Estrogenic hormone action in the heart: regulatory network and function., Cardiovasc. Res., 53, 709-719.
  51. Arsenault B.J., Lemieux I., Després J.P., Wareham N.J., Luben R., Kastelein J.J.P., Khaw K.T., Boekholdt S.M. (2007)., Cholesterol levels in small LDL particles predict the risk of coronary heart disease in the EPIC- Norfolk prospective population study., Eur. Heart J., 28(22), 2770- 2777.
  52. Wisker E., Feldheim W., Pomeranz X. and Meuser F. (1985)., Dietary fibre in cereals., Adv. Cereal Sci. Tech,. 7, 169-238.
  53. Jenkins D.J.A., Ghafari H., Wolever T.M.S., Taylor R.H., Jenkins A.L., Barker H.M., Fielden H. and Bowling A.C. (1982)., Relationship between rate of digestion of food and postprandial glycemia., Diabetologia, 22, 450.
  54. Ring S.G., Gee J.M., Whittam M., Orford P. and Johnson I.T. (1988)., Resistant starch: Its chemical form in foodstuffs and effect on digestibility in vitro., Food Chem. 28, 97.
  55. Krishna Kumari and Thayumanavan (1997)., Comparative study of resistant starch from minor millets on intestinal responses, blood glucose, serum cholesterol, and triglycerides in rats., J. Food Sci. and Agric., 75, 296-302.
  56. Pathak P. and Srivastava S. (1998)., Development and evaluation of food formulation based on foxtail millet for their suitability in diabetic diet., Proceedings of Nutr. Soc. India, NIN, 59.
  57. Chen W.L., Anderson J.W. and Gould M.R. (1984)., Effect of oat bran, oat gum and pectin on lipid metabolism of cholesterol fed rats., Nutr. Rep. Int., 24, 93-98.
  58. Anderson J.W., Hamilton C.C., Horn J.L., Spencer D.B., Dillon D.W., Zeigler J.A. (1991)., Metabolic effects of insoluble oat fibre in lean men with type II diabetes., Cereal Chem., 68, 291-294.
  59. Giacco F. and Brownlee M. (2010)., Oxidative stress and diabetic complications., Circ Res. 107(9):1058-70. doi: 10.1161/CIRCRESAHA.110.223545.
  60. Rodrigo R., Gonzalez J. and Paoletto F. (2011)., The role of oxidative stress in the pathophysiology of hypertension., Hypertens. Res., 34, 431–440.
  61. Houston M.C. (2011)., The role of cellular micronutrient analysis, nutraceuticals, vitamins, antioxidants and minerals in the prevention and treatment of hypertension and cardiovascular disease., Ther. Adv. Cardiovasc. Dis., 4, 165–183.
  62. Palsamy P. and Subramanian S. (2010)., Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stressand pancreatic beta-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats., J. Cell. Physiol., 224, 423–432.
  63. Omotayo O. Erejuwa, Siti A. Sulaiman and Mohd S. Ab Wahab. (2012)., Honey: A Novel Antioxidant., Molecules, 17, 4400-4423; doi:10.3390/molecules17044400.
  64. Sangeeta Gupta S.K. Shrivastava, Manjul Shrivastava. (2014)., Proximate composition of seeds of hybrid varieties of minor millets., International Journal of Research in Engineering and Technology, 3(2), 687.
  65. Hegde P., Rajasekaran N. and Chandra T. (2004)., Effect of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan-induced rats., Nutr. Res., 25(12), 1109-1120.