International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Viruses and Viroids: Insights of Pathogenicity

Author Affiliations

  • 1Dolat Usha Institute of Applied Sciences and Dhiru Sarla Institute of Management and Commerce, Valsad; Veer Narmad South Gujarat University, Surat, Gujarat, INDIA
  • 2Shree Ram Krishna Institute of Computer Education and Applied Sciences, Surat; Veer Narmad South Gujarat University, Surat, Gujarat, INDIA

Int. Res. J. Biological Sci., Volume 4, Issue (4), Pages 77-88, April,10 (2015)

Abstract

Viruses are simple, a cellular obligate host parasite contains one or more either double or single stranded DNA or RNA molecules enclosed in a protein coat. More variety is found in the genomes of viruses than in those of prokaryotes and eukaryotes. They are classified on the basis of their nucleic acid characteristics, capsid symmetry, the presence or absence of envelope and their host. They are capable of causing disease ranging from prokaryote like bacteria to eukaryotes including humans, animals and even plants. Different viruses are able to cause disease as they contain one or more pathogenic genes encoding various antigenic proteins found present in capsid or envelope. Viroids are sub viral particles. Viroids are single stranded RNA stretches without capsid, having a few hundred nucleotide length. Their genome is quiet smaller than smallest known virus genome. In spite of absence of any protein encoding genes, they are important plant pathogens as they contain RNA structural elements which interact with various host factors. The viroid plant interactions enable them to use the host machinery for replication and transport. Viroids RNAs transcription occurs by rolling circle mechanisms in the plant host’s nuclei or chloroplasts. Recent evidence indicates that viroid-derived small RNAs acting through host RNA silencing pathways play a key role in viroid pathogenicity. Viroid RNAs have sizes similar to endogenous small interfering RNA and microRNA and so capable of alteration of the normal gene expression in the host plant. Viroids have the ability to induce both RNA-mediated transcriptional gene silencing and posttranscriptional gene silencing in infected plants. To discover and understanding molecular biology of these fascinating RNA molecules can be just regarded as beginning.

References

  1. Leppard K., Nigel D. and Easton A., Introduction to Modern Virology, Blackwell Publishing Limited, 4, ISBN 1-4051-3645-6 (2007)
  2. Mayer A., Über die Mosaikkrankheit des Tabaks, Die Landwirtschaftliche Versuchs-stationen (in German) 32, 451–467 (1886), Translated into English in Johnson J. Ed., Phytopathological classics (St. Paul, Minnesota: American Phytopathological Society,7, 11–24 (1942)
  3. Zaitlin M., The Discovery of the Causal Agent of the Tobacco Mosaic Disease, In Kung S.D. and Yang S.F., Discoveries in Plant Biology, Hong Kong: World Publishing Co., 105–110 (1998) , ISBN 978-981-02-1313-8
  4. Iwanowski D., Über die Mosaikkrankheit der Tabakspflanze, Bulletin Scientifique publiéparl' Académie Impériale des Sciences de Saint-Pétersbourg / Nouvelle Serie III (in German and Russian) (St. Petersburg), 35, 67–70 (1892), Translated into English in Johnson J. Ed., Phytopathological classics (St. Paul, Minnesota: American Phytopathological Society) , 27–30 (1942)
  5. Beijerinck M.W., Überein Contagium vivum fluidumalsUrsache der Fleckenkrankheit der Tabaksblätter, Verhandelingen der Koninklykeakademie van Wettenschappente Amsterdam (in German), 65, 1–22 (1898) , Translated into English in Johnson J. Ed., Phytopathological classics (1942)
  6. Diener T.O., Potato spindle tuber, In The Viroids, T.O. Diener ed., 221–3, Plenum, New York (1987)
  7. Qi Y. and Ding B., Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid, Plant Cell., 15, 2566–77 (2003)
  8. Tessitori M., Differential display analysis of gene expression in Ertog citron leaves infected by Citrus Viroid III, Biochim. Biophys. Acta., 1769, 228-235 (2007)
  9. Tabler M. and Tsagris M., Viroids: petite RNA pathogens with distinguished talents, Trends Plant Sci, 339-48 (2004)
  10. http://subviral.med.uottawa.ca, (2014)
  11. Owens R.A. and Hammond R.W., Viroids: Secrets slowly revealed, published in BTi, (2005)
  12. Flores R., Randles J.W., Bar-Joseph M. and Diener T.O., A proposed scheme for viroid classification and nomenclature, Arch Virol., 143, 623–9 (1998)
  13. Góra-Sochacka, Viroids: unusual small pathogenic RNAs, Acta Biochimica Polonica., 51(3), 587-607 (2004)
  14. Steger G. and Riesner D., Properties of Viroids: Molecular characteristics, In: Hadidi A., Flores R., Randles J. and Semancik J., Eds. Viroids: CSIRO Publishing, Australia, 15-29 (2003)
  15. Riesner D. and Gross H. J., Viroids, Annu Rev Biochem, 54, 531-64 (1985)
  16. Harders J., Lukács N., Robert-Nicoud M., Jovin T. M. and Riesner D., Imaging of viroids in nuclei from tomato leaf tissue by in situ hybridization and confocal laser scanning microscopy, EMBO J, 3941-9 (1989)
  17. Schumacher J., Sänger H. L. and Riesner D., Subcellular localization of viroids in highly purified nuclei from tomato leaf tissue, EMBO J, 1549-55 (1983)
  18. Warrilow D. and Symons R. H., Citrus exocortis viroid RNA is associated with the largest subunit of RNA polymerase II in tomato in vivo, Arch Virol, 144, 2367-75 (1999)
  19. Kolonko N., Bannach O., Aschermann K., Hu K. H., Moors M. and Schmitz M., Transcription of potato spindle tuber viroid by RNA polymerase II starts in the left terminal loop, Virology, 347, 392-404 (2006)
  20. Baumstark T., Schröder A. R. and Riesner D., Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation, EMBO J, 16, 599-610 (1997)
  21. Schrader O., Baumstark T. and Riesner D., A mini-RNA containing the tetraloop, wobble-pair and loop E motifs of the central conserved region of potato spindle tuber viroid is processed into a minicircle, Nucleic Acids Res, 31, 988-98 (2003)
  22. Keese P. and Symons R. H., Domains of viroids: Evidence of intermolecular RNA rearrangements and their contribution to viroid evolution, ProcNatlAcadSci USA, 82, 4582-6 (1985)
  23. Pelchat M., Coté F. and Perreault J. P., Study of the polymerization step of the rolling circle replication of peach latent mosaic viroid, Arch Virol, 146, 1753-63 (2001)
  24. Dubé A., Bolduc F., Bisaillon M. and Perreault J. P., Mapping studies of the Peach latent mosaic viroid reveal novel structural features, Mol Plant Pathol, 12, 688-701 (2011)
  25. Navarro J. A. and Flores R., Characterization of the initiation sites of both polarity strands of a viroid RNA reveals a motif conserved in sequence and structure, EMBO J, 19, 2662-70 (2000)
  26. Navarro J. A., Vera A. and Flores R. A., Chloroplastic RNA polymerase resistant to tageti toxin is involved in replication of avocado sunblotch viroid, Virology, 268, 218-25 (2000)
  27. Darňs J. A., Marcos J. F., Hernández C. and Flores R., Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing, Proc Natl Acad Sci USA, 91, 12813-7 (1994)
  28. Darňs J. A. and Flores R. A., Chloroplast protein binds a viroid RNA in vivo and facilitates its hammerhead-mediated self-cleavage, EMBO J, 21, 749-59 (2002)
  29. Shors T., Understanding Viruses, 1st edition (2008)
  30. Pandey G. and Madhuri S., Oncogenic DNA and RNA viruses causing the cancer pathogenesis, Int. j. of Pharma Sci., 5(3), 120-123 (2010)
  31. Epstein M.A., Reflections on Epstein-Barr virus: some resolved uncertainties, J Infect, 43, 111-115 (2001)
  32. Uozaki H. and Fukayama M., Epstein-Barr Virus and gastric carcinoma - Viral carcinogenesis through epigenetic mechanisms, Int J Clin Exp Pathol, 198-216 (2008)
  33. Kumar V., Abbas A.K. and Fausto N., Neoplasia In: Pathologic Basis of Disease, 7thEdn, Saunders, Elsevier India Pvt Ltd, New Delhi, 269-342 (2006)
  34. Helt A.M. and Galloway D.A., Mechanism by which DNA tumour virus oncoproteins target the Rb family of pocket proteins, Carcinogenesis, 24, 159 (2003)
  35. Uyeki T.M., Human infection with highly pathogenic avian influenza A virus, Emerging infections, 49, 279-290 (2009)
  36. Dolcetti R. and Masucci M.G., Epstein-Barr Virus: Induction and control of cell transformation, J Cell Physiol, 196, 207 (2003)
  37. Bosch C.V.D., A role for the RNA viruses in the pathogenesis of Burkitt’s Lymphoma: The need for reappraisal, Advances in haematology, 10, 1-16 (2012)
  38. 3Cougot D., Buendia M. and Neuveut C., Carcinogenesis induced by Hepatitis B virus, Human Cancer Viruses, 108-136 (2008)
  39. Ramesh R.M.A. and Panda S.K., Prevalence of Hepatitis C virus antibodies in chronic liver diseases and hepatocellular carcinoma patients in India, J Gastroenterol Hapatol, 393-395 (1992)
  40. Adinolfi L.E., Mangoni E.D., Zampino R. and Ruggiero G., Hepatitis C virus associated steatosis – pathogenic mechanisms and clinical implications, Aliment Pharmacol Ther, 22(2), 52-55 (2005)
  41. Tsui P.T., Kwok M.L., Yuen H. and Lai S.T., Severe acute respiratory syndrome: clinical outcome and prognostic correlates, Emerg Infect Dis., 1064–1069 (2003)
  42. Luytjes W., Bredenbeek P.J., Noten A.F., Horzinek M.C. and Spaan W.J., Sequence of mouse hepatitis virus A59 mRNA 2: indications for RNA recombination between coronaviruses and influenza C virus, Virology, 166, 415–422 (1988)
  43. McCullers J.A., Do specific virus-bacteria pairings drive clininical outcomes of pneumonia?, Clin. Microbiol. And inf., 19, 113-118 (2012)
  44. Stohr K., Preventing and treating influenza, BMJ,326, 1223–1224 (2003)
  45. Taubenberger J. K. and Kash J.C., Influenza virus evolution, host adaptation, and pandemic formation, Cell Host Microbe, 440–451 (2010)
  46. Vigerust D. J., Ulett K. B., Boyd K. L., Madsen J., Hawgood S. and McCullers J. A., N-Linked glycosylation attenuates H3N2 influenza viruses, J Virol, 81, 8593–8600 (2007)
  47. McAuley J. L., Hornung F., Boyd K. L., Smith A. M., McKeon R., Bennink J., Yewdell J. W. and McCullers J. A., Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia, Cell Host Microbe, 240–249 (2007)
  48. Peltola V.T. and McCullers J.A., Respiratory viruses predisposing to bacterial infections: role of neuraminidase, Pediatr Infect Dis J, 23, S87–S97 (2004)
  49. Kajihara M., Sakoda Y., Soda K., Minari K., Okamastu M. and Takada A., The PB2, PA, HA, NP and NS genes of a highly pathogenic avian influenza virus A/whooper Swan/Mongolia/3/2005 are responsible for pathogenicity in ducks, Virology J., 10(45), 1-9 (2013)
  50. Reis J. L., Mead D., Rodriguez L. L. and Brown C. C., Transmission and pathogenesis of vesicular stomatitis viruses, Braz J Vet Pathol, 2(1), 49-58 (2009)
  51. Ellis S. D., Boehm M. J. and Qu F., Viral diseases of plants, Factsheet: Agricultural and Natural resources, 401-405 (2008)
  52. Lemmety A., Lammanen J., Soukainen M. and Tegel J., Emerging virus and viroid pathogens species identified for the first time in horticultural plants in Finland in 1997 to 2010, Agri. And Food Sci., 20, 29-41 (2011)
  53. Ahlquist P., RNA dependent RNA polymerases viruses and RNA silencing, Science magazine, 296, 1270-1273 (2002)
  54. Mourrain P., Beclin C. and Elmyan T., Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural viral resistance, Cell, 101, 533-542 (2000)
  55. Dalmay T., Hamilton A., Rudd S., Angell S. and Baulcombe D. C., Cell, 101, 543 (2000)
  56. Xie Z., Fan B., Chen C. and Chen Z., Proc. Natl. Acad. Sci.U.S.A, 98, 6516 (2001)
  57. Wang M. B., Bian X. Y., Wu L. M., Liu L. X., Smith N. A., Isseneger D., Wu R. M., Masuta C., Vance V. B., Watson J. M., Rezaian A., Dennis E. s. and Waterhouse P. M., On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites, PNAs, 101(9), 3275-3280 (2004)
  58. Waterhouse P. M., Wang M. B. and Lough T., Gene silencing as an adaptive defense against viruses, Nature, 411, 834–842 (2001)
  59. Voinnet O., RNA silencing as a plant immune system against viruses, Trends Genet., 17, 449–459 (2001)
  60. Hamilton A., Voinnet O. and Chappel L., Two classes of short interfering RNA in RNA silencing, EMBO J., 21, 4671–4679 (2002)
  61. Mlotshwa S., Voinnet O., Mette M. F., Matzke M., Vaucheret H., Ding S. W., Pruss G. and Vance V. B., RNA silencing and the mobile silencing signal, Plant Cell, 14, S289–S301 (2002)
  62. Sänger H. L., Schiebel L., Riedel T., Pélissier T. and Wassenegger M., The possible links between RNA-directed DNA methylation (RdDM), sense and antisense RNA, gene silencing, symptom-induction upon microbial infections and RNA-directed RNA polymerase (RdRP), Proc 8thIntern Symp Molecular Plant- Microbe Interactions, Tennessee (1998)
  63. Wassenegger M., Heimes S., Riedel L. and Sänger H. L., RNA-directed de novo methylation of genomic sequences in plants, Cell, 76, 567-576 (1994)
  64. Gómez G., Martínez G. and Pallás V., Interplay between viroid-induced pathogenesis and RNA silencing pathways, Trends Plant Sci., 14, 264-269 (2009)
  65. Sano T., Barba M., Fang Li S. and Hadidi A., Viroids and RNA silencing, GM crops, 1(2), 80-86 (2010)
  66. Itaya A., Folimonov A., Matsuda Y., Nelson R. S. and Ding B., Potato spindle tuber viroid as inducer of RNA silencing in infected tomato, Mol Plant Microbe Interact, 14, 1332-4 (2001)
  67. Papaefthimiou I., Hamilton A. J., Denti M. A., Baulcome D. C., Tsagris M. and Tabler M., Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing, Nucleic Acids Res, 29, 2395-400 (2001)
  68. Martinez de Alba A. E., Flores R. and Hernandez C., Two chloroplastic viroids induce the accumulation of small RNAs associated with posttranscriptional gene silencing, J Virol, 76, 13094-6 (2002)
  69. Cho W. K., Jo Y., Jo K. M. and Kim K. H., A current overview of 2 viroids that infect chrysanthemums: CSVd and CChMVd, Viruses, 1099-1113 (2013)
  70. Markarian N., Li H. E., Ding S. W. and Semancik J. S., RNA silencing as related to viroid-induced symptom expression, Arch Virol, 149, 397-406 (2004)
  71. Itaya A., Zhong X., Bundschuh R., Qi Y., Wang Y. and Takeda R.,A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation, J Virol, 81, 2980-94 (2007)
  72. Machida S., Shibuya M. and Sano T., Enrichment of viroid small RNAs by hybridization selection using biotinylated RNA transcripts to analyze viroid induced RNA silencing, J Gen Pl Pathol, 74, 203-7 (2008)
  73. Patrick St-Pierre I., Hassen F., Thompson D. and Perreault J. P., Characterization of the siRNAs associated with peach latent mosaic viroid infection, Virology, 383, 178-82 (2009)
  74. Navarro B., Pantaleo V., Gisel A., Moxon S. and Dalmay T., Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction, PLoS ONE, 7686 (2009)
  75. Di Serio F., Gisel A., Navarro B., Delgado S. and Martínez de Alba Á.-E., Deep sequencing of the small RNAs derived from two symptomatic variants of a chloroplastic viroid: Implications for their genesis and for pathogenesis, PLoS ONE, 7539 (2009)
  76. Owens R. A. and Hammond R. W., Viroid pathogenicity: One process, many faces, Viruses, 298-316 (2009)
  77. Denti M., Boutla A., Tsagris M. and Tabler M., Short interfering RNAs specific for potato spindle tuber viroid are found in the cytoplasm but not in the nucleous, Plant , 37, 762-9 (2004)
  78. Voinnet O., Use, tolerance and avoidance of amplified RNA silencing by plants, Trends Plant Sci, 13, 317-28 (2008)
  79. Xie Z. and Qi X., Diverse small RNA-directed silencing pathways in plants, Biochemca et BiophysicaActa, 1779, 720-4 (2008)
  80. Dillin A., The specifics of small interfering RNA speci-ficity, Proc Natl Acad Sci USA,100, 6289-91 (2003)
  81. Landry P. and Perreault J. P., Identification of a Peach latent mosaic viroid hairpin able to act as a Dicer-like substrate, J Virol, 79, 6540-3 (2005)
  82. Schnölzer M., Haas B., Ramm K., Hofmann H. and Sänger H. L., Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTVd), EMBO J, 2181-90 (1985)
  83. Zamore P. D., RNA interference: listening to the sound of silence, Nat Struct Mol Biol, 746-50 (2001)
  84. Vanitharani R., Chellappan P. and Fauquet C. M., Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells, Proc Natl Acad Sci USA, 100, 9632-6 (2003)
  85. Owens R. A., Steger G., Hu Y., Fels A., Hammond R.W. and Riesner D., RNA structural features responsible for potato spindle tuber viroid pathogenicity, Virology, 222, 144-58 (1996)
  86. Elleuch A., Fakhfakh H., Pelchat M., Landry P., Marrakchi M. and Perreault J.P., Sequencing of Australian GVd and YSVd isolated from a Tunisian grapevine without passage in an indicator plant, European J. of Plant Path., 108, 815-820 (2002)
  87. Matousek J., Orctova L., Patzak J., Svoboda P. and Ludvikovai., Molecular sampling of HSVd from grapevines in hop production areas of Czech Republic and hop protection, Plant Soil Environ, 49(4), 168-175 (2003)
  88. Trivedi S., Shekhavat G. and Purohit S., Analysis of similarities between viroid, prokaryote and Eucaryote genomes to revisit theories of viroid origin, J. of Cell and Mol. Biology, 6(1), 9-18 (2007)
  89. Di Serio F., Identification and characterization of PSTVd infecting Solanumjasminoides and S. ranttonetti in Italy, J. of Plant Path., 89(2), 297-300 (2007)
  90. Thomas T. P., Kunta M., Graca J. V., Setamou M. and Skaria M., Suppression of Phytophthora infection in citrus infected with viroids, Hort. Science, 45(7), 1069-1072 (2010)
  91. Aghl M. Z., Izadpnah K., Niazi A., Behjatania S. A. A. and Afsharifar A. R., J. Agri. Sci. Tech., 15, 855-865 (2013)