6th International Virtual Congress (IYSC-2020) And Workshop. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Pseudomonas Syringae: An Overview and its future as a Rain Making Bacteria

Author Affiliations

  • 1School of Bio Sciences and Technology, VIT University Vellore-632014, Tamil Nadu, INDIA

Int. Res. J. Biological Sci., Volume 4, Issue (2), Pages 70-77, February,10 (2015)

Abstract

Bioprecipitation is a process of precipitating water by precipitation causing microorganisms by its ice nucleating properties. The concept of rain-making bacteria is known since 1980’s but lack of research data makes it unrevised. Pseudomonas syringae is a Gram-negative bacterium mostly known to have ice-nucleating properties causing plant diseases. Their huge numbers of pathovars were identified in different hosts each having different modes of action. As always known for its pathogenesis in plant species with its ice-nucleating gene (ina), a concept of ice minus bacteria was created in 1970’s which is against wild type P.syringae. So the bacterium lacking ice nucleating gene (ina) competed with wild type strain and succeeded. But findings say that a bacterium (wild type Pseudomonas syringae) was found on rain drops of different parts of the world and that bacterium is literally raining. More studies in this bacterium as a rain-making element may give as a better chance to know more about its role in life cycle.

References

  1. Constantinidou HA, Hirano SS, Baker LS, and Upper CD. Atmospheric Dispersal of Ice Nucleation-Active Bacteria: The Role of Rain. Phytopathol.,80, 934-937 (1990)
  2. Hoose C, Kristjαnsson JE, Burrows SM. How important is biological ice nucleation in clouds on a global scale?, Environ. Res. Let.,5(2)(2010)
  3. Pratt KA, DeMott PJ, French JR, Wang Z, Westphal DL, Heymsfield AJ, Twohy CH, Prenni AJ and Prather KA, In situ detection of biological particles in cloud ice-crystals. Nat. Geosci.,, 398-401 (2009)
  4. Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffiere A, Yan S, Dominguez H and Thompson BM, The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle, The ISME J.,2(3),321-334 (2008)
  5. Young JM, Pathogenicity and identification of the lilac pathogen, Pseudomonas syringae pv. syringae van Hall 1902, Ann. Appl. Biol.,118, 283–298 (1991)
  6. Young JM, Taxonomy of Pseudomonas syringae, J. Plant Pathol., 92(2010) (1 Supplement)
  7. Doudoroff M, Palleroni NJ, Genus I. Pseudomonas Migula, 217–243. In R. E. Buchanan and N. E. Gibbons (ed.), Bergey’s manual of determinative bacteriology, 8th ed. Williams & Wilkins, Baltimore, Md., (1974)
  8. Dye DW, Bradbury JF, Goto M, Hayward AC, Lelliott RA and Schroth MN, International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains, Rev. Plant Pathol., 59, 153–168 (1980)
  9. Stolp H, Starr MP, and Baigent NL, Problems in speciation of phytopathogenic pseudomonads and Xanthomonads, Annu. Rev. Phytopathol.,, 231-264 (1965)
  10. Mansvelt EL and Hattingh JM, Scanning electron microscopy of colonization of pear leaves by Pseudomonas syringae pv. Syringae,Can. J. Bot., 65(12), 2517-2522 (1987)
  11. Sabaratnam S and Beattie GA, Differences between Pseudomonas syringae pv. syringae B728a and Pantoeaagglomerans BRT98 in Epiphytic and Endophytic Colonization of Leaves, Appl. Environ. Microbiol., 69(2),1220–1228 (2003)
  12. Young JM, Dye DW, Bradbury JF, Panagopoulos CG and Robbs CF, A proposed nomenclature and classification for plant pathogenic bacteria, New Zealand J. Agri. Res.,21, 153-177 (1978)
  13. Cuppels DA and Ainsworth T, Molecular and physiological characterization of Pseudomonas syringae pv. tomato and Pseudomonas syringae pv. maculicolastrains that produce the phytotoxin coronatine, Appl. Environ. Microbiol., 61, 3530–3536 (1995)
  14. Denny TP, Gilmour MN and Selander RK, Genetic diversity and relationships of two pathovars of Pseudomonas syringae, J. Gen. Microbiol., 134, 1949–1960 (1988)
  15. Endert E and Ritchie DF, Detection of pathogenicity, measurement of virulence, and determination of strain variation in Pseudomonas syringae pv. Syringae, Plant Dis., 68, 677–680 (1984)
  16. Gardan L, Shafik H, Belouin S, Broch R, Grimont F and Grimont PAD, DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959)
  17. Weingart H and B Volksch, Genetic fingerprinting of Pseudomonas syringae pathovars using ERIC-, REP, and IS50-PCR, J. Phytopathol., 145, 339–345 (1997)
  18. Cheng G Y, Legard DE, Hunter JE, and Burr TJ, Modified bean pod assay to detect strains of Pseudomonas syringae pv. syringae that cause bacterial brown spot of snap bean, Plant Dis.,73, 419–423 (1989)
  19. Legard DE, Aquadro CF and Hunter JE, DNA sequence variation and phylogenetic relationships among strains of Pseudomonas syringae pv. syringae inferred from restriction site maps and restriction fragment length polymorphism, Appl. Environ. Microbiol., 59, 4180–4188 (1993)
  20. Little EL, Bostock RM and Kirkpatrick BC, Genetic characterization of Pseudomonas syringae pv. syringaestrains from stone fruits in California, Appl. Environ. Microbiol., 64, 3818–3823 (1998)
  21. Cuppels DA, The use of pathovar-indicative bacteriophages for rapidly detecting Pseudomonas syringae pv. tomato in tomato leaf and fruit lesions, Phytopathol., 74, 891–894 (1984)
  22. Jones JB, Gitaitis RD and McCarter SM, Evaluation of indirect immune-fluorescence and ice nucleation activity as rapid tests for identifying foliar diseases of tomato transplants incited by fluorescent pseudomonads, Plant Dis., 67, 684–687 (1983)
  23. Young JM and Triggs CM, Evaluation of determinative tests for pathovars of Pseudomonas syringae van Hall 1902, J. Appl. Bacteriol., 77, 195–207 (1994)
  24. Young JM, Recent systematics developments and implications for plant pathogenic bacteria. In: Priest F.G., Goodfellow M. (eds), 133-160, Appl Microb Sys Chapman and Hall, London, (1974)
  25. Palacio-Bielsa A, Cambra MA and Lopez MM, PCR detection and identification of plant-pathogenic bacteria: Updated review of protocols (1989-2007), J. Plant Pathol.,91, 249-297 (2009)
  26. Karimi-Kurdistani G and Harighi B., Phenotypic and molecular properties of Pseudomonas syringae pv. syringae the causal agent of bacterial canker of stone fruit trees in kurdistan province, J. PlantPathol., 90(1), 81-86 (2008)
  27. Whalen MC, Innes RW, Bent AF and Staskawicz BJ, Identification of Pseudomonas syringae Pathogens of Arabidopsis and a Bacterial Locus Determining Avirulence on Both Arabidopsis and Soybean, ThePlant Cell, 49-59 (1991)
  28. Kaluzna M, Ferrante P, Sobiczewski P and Scortichini M, Characterization and genetic diversity of Pseudomonas syringae from stone fruits and hazelnut using repetitive-PCR and MLST, J. Plant. Pathol., 92(3),781-787 (2010)
  29. Peters BJ, Ash GJ, Cother EJ, Hailstones DL, Noble DH and Urwin NAR, Pseudomonas syringae pv. maculicola in Australia : Pathogenic, phenotypic and genetic diversity, Plant Pathol., 53, 73–79 (2004)
  30. Gallelli A, Talocci S, Pilotti M and Loreti S, Real-time and qualitative PCR for detecting Pseudomonas syringaepv. actinidiae isolates causing recent outbreaks of kiwifruit bacterial canker, Plant pathol.,63, 264-276 (2013)
  31. Hirano SS and Upper CD, Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae—a Pathogen, Ice Nucleus, and Epiphyte, Microbiol. Mol. Biol. Rev., 64(3), 624–653 (2000)
  32. Joarder V, Linderberg M and Jackson et al., Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition, J. Bacteriol.,187(18), 6488-6498 (2005)
  33. Dickinson CH, Austin B and Goodfellow M., Quantitative and qualitative studies of phylloplane bacteria from Lolium perenne, J. Gen. Microbiol., 91, 157–166 (1975)
  34. Lindow SE, Arny DC and Upper CD, Distribution of ice nucleation-active bacteria on plants in nature, Appl. Environ. Microbiol., 36, 831–838 (1978)
  35. Ercolani GL, Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time, Microb. Eco., 21, 35–48 (1991)
  36. Thompson IP, Bailey MJ, Fenlon JS, Fermor TR, Lilley AK, Lynch JM, McCormack PJ, McQuilken MP, Purdy KJ, Rainey PB and Whipps JM, Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris), Plant Soil, 150, 177–191 (1993)
  37. Arny DC, Lindow SE and Upper CD, Frost sensitivity of Zea mays increased by application of Pseudomonas syringae. Nat.,262, 282–284 (1976)
  38. Warren GJ, Bacterial ice nucleation: molecular biology and applications, Biotechnol. Genet. Eng. Rev., 107–135 (1987)
  39. Wolber PK and Warren GJ, Evolutionary perspective on the ice nucleation gene-encoded membrane protein. 315–330, In J. H. Andrews and S. S. Hirano (ed.), Microbial ecology of leaves. Springer-Verlag, New York, N.Y., (1991)
  40. Tegos G, Vargas C, Perysinakis A, Koukkou AI, Christogianni A, Nieto JJ, Ventosa A and Drainas C, Release of cell-free ice nuclei from Halomonas elongate expressing the ice nucleation gene inaZ of Pseudomonas syringae, J. Appl. Microbiol., 89(5), 785-92 (2000)
  41. Green RL, Corotto LV and Warren GJ, Deletion mutagenesis of the ice nucleation gene from Pseudomonas syringae S203, Mol. Gen. Geno., 215, 165–172 (1988)
  42. Kajava AV, Molecular modelling of the three- dimensional structure of bacterial Ina proteins, 101–114. In R. E. Lee, Jr., G. J. Warren, and L.V. Gusta (ed.), Biological ice nucleation and its applications, Amer Phytopathol Soc, St. Paul, Minn, (1995)
  43. Mueller GM, Wolber PK and Warren GJ, Clustering of ice nucleation protein correlates with ice nucleation activity, Crybiol., 27, 416–422 (1990)
  44. Graether SP and Jia Z, Modeling Pseudomonas syringae ice-nucleation protein as a B-helical protein, Biophy. J., 80, 1169-1173 (2001)
  45. Von Heijne G., Analysis of the distribution of charged residues in the N-terminal region of signal sequences: Implications for protein export in prokaryotic and eukaryotic cells, Eur. Mol. Biol. J.,, 2315-2318 (1984)
  46. Sarhan MAA, Ice nucleation protein as a bacterial surface display protein, Arch. Biol. Sci., 63(4), 943-948 (2001)
  47. Jung HC, Lebeault JM and Pan JG, Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae, Nat. Biotechnol., 16(6), 576-580 (1998a)
  48. Jung HC, Park JH, Park SH, Lebeault JM and Pan JG, Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein, Enz. Micro. Tech.,22(5), 348-354 (1998b)
  49. Kim YS, Jung HC and Pan JG, Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants, Appl. Environ. Microbiol., 66(2), 788-793 (2000)
  50. Jeong H, Yoo S and Kim E, Cell surface display of salmobin, a thrombin-like enzyme from Agkistrodon halys venom on Escherichia coli using ice nucleation protein, Enz. Micro. Tech., 28(2-3), 155-160 (2001)
  51. Choi SH, Nam YK and Kim KM, Novel expression system for combined vaccine production in Edwardsiella tarda ghost and cadaver cells, Mol. Biotech., 46(2), 127- 133 (2010)
  52. Yim SK, Kim DH, Jung HC, Pan JG, Kang HS, Ahn T and Yun CH, Surface display of heme- and diflavin-containing cytochrome P450 BM3 in Escherichia coli : A whole cell biocatalyst for oxidation, J. Microbiol. Biotechnol., 20(4), 712-717 (2010)
  53. Hynes HP, Biotechnology in agriculture: an analysis of selected technologies and policy in the United States, Repro. Genet. Eng., 2(1), 39–49 (1989)
  54. Christner B, Morris C, Foreman C, Cai R and Sands D, Ubiquity of Biological Ice Nucleators in Snowfall, Science319 (5867) , 1214-1214 (2008)
  55. Christner B et al., Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow, PNAS,105(48), 18854-18859 (2008)
  56. Poschl U, Martin ST, Sinha B, Chen Q et al., Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Sci., 329(5998), 1513-1516 (2010)
  57. DeLeon-Rodriguez N et al., Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications, PNAS, 110(7), 2575-2580 (2013)
  58. Robbins Jim, From Trees and Grass, Bacteria That Cause Snow and Rain. The New York Times (2010)