5th International Virtual Conference (IVC-2018).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Characterization of Culturable Thermophilic Actinobacteria from Livingston Island, Antarctica

Author Affiliations

  • 1Department of Applied Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 26, 1113 Sofia, BULGARIA

Int. Res. J. Biological Sci., Volume 3, Issue (3), Pages 30-36, March,10 (2014)

Abstract

Thermophilic microorganisms in Antarctica are poorly investigated. This paper reports partial characterization and biosynthetic abilities of 26 thermophilic actinobacteria isolated from soil and penguin excrements samples from Livingston Island, Antarctica. About 15% of the tested Antarctic actinobacteria were able to tolerate up to 4% NaCl in the growth medium. We found that all strains are sensitive to eight, and 77% to ten of the 12 tested antibiotics suggesting relatively low anthropogenic impact in this Antarctic region. The Antarctic actinobacteria were tested for hydrolytic enzymes activity, antibiotic and hemolytic activity. It was found that all strains were able to hydrolyze starch, 81% - tributirin, and 65% - casein. All Antarctic actinobacteria demonstrated hemolytic activity, and about 27% - antimicrobial activityagainst some common bacterial pathogens. The results obtained revealed promising strains producers of industrially important thermostable enzymes and antibiotic compounds.

References

  1. Mc Carthy A.J. and Williams S.T., Actinomycetes as agents of biodegradation in the environment – A review, Gene, 115, 189-192 (1992)
  2. Baltz R H., Renaissance in antibacterial discovery from actinomycetes, Curr. Opin. Pharmacol., 557-563 (2008)
  3. Su S.S., Tian L., Chen G., Li Z.Q., Xu W.F. and Pei Y.H., Two new compounds from the metabolites of a marine-derived actinomycete Streptomyces cavourensis YY01-17, J. Asian Nat. Prod. Res., 15, 265-269 (2013)
  4. Yallop C.A., Edwards C. and Williams S.T., Isolation and growth physiology of novel thermoactinomycetes, J. Appl. Microbiol., 83, 685-692 (1997)
  5. Lee L.H., Cheah Y.K., Sidik S.M., Ab Mutalib N.S., Tang Y.L., Lin H.P. and Hong K., Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production, World J. Microbiol. Biotechnol., 28, 2125-2137 (2012)
  6. Mahajan G.B. and Balachandran L., Antibacterial agents from actinomycetes - a review, Front. Biosci., (Elite Ed.), 240-253 (2012)
  7. Eduards C., Isolation properties and potential applications of thermophilic actinomycetes, Appl. Biochem. Biotechnol., 42, 161-179 (1993)
  8. Gousterova A., BraikovaD., Goshev I., Christov P., Tishinov K., Vasileva-Tonkova E., Haertlé . and Nedkov P., Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis, Lett. Appl. Microbiol., 40, 335-340 (2005)
  9. Gousterova A., Nustorova M., Paskaleva D., Naydenov M., Neshev G. and Vasileva-Tonkova E., Assessment of feather hydrolysate from thermophilic actinomycetes for soil amendment and biological control application, Int. J. Environ. Res., 1065-1070 (2011)
  10. Kikani B.A., Shukla R.J. and Singh S P., Biocatalytic potential of thermophilic bacteria and actinomycetes, In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, (d., A. Mendez-Vilas), ©FORMATEX, 1000-1007 (2010)
  11. Waksman S.A., Schatz A. and Reynolds D.M., Production of antibiotic substances by actinomycetes. Ann. N.Y. Acad. Sci., 1213, 112-124 (2010)
  12. Prakash D., Nawani N., Prakash M., Bodas M., Mandal A., Khetmalas M. and Kapadnis B., Actinomycetes: a repertory of green catalysts with a potential revenue resource., Biomed. Res. Int., 2013, article ID 264020 (2013)
  13. Tendler M.D. and Burkholder P.R., Studies on the thermophilic actinomycetes. I. Methods of cultivation, Appl. Microbiol., 394-399 (1961)
  14. Moncheva P., Toshkov S., Dimitrova N., Chipeva V., Antonova-Nikolova S. and Bogatzevska N., Characteristics of soil actinomycetes from Antartica, J. Cult. Coll.,3 -14, (2002)
  15. Mavengere N.R., Isolation, identification and characterization of novel actinomycetes from Antarctic soil samples, M.Sc. Thesis, University of the Western Cape, 111 (2008)
  16. Nicolaus B., Marsiglia F., Esposito E., Trincone A., Lama L., Sharp R., di Prisco G. and Gambacorta A., Isolation of five strains of thermophilic eubacteria in Antarctica, Polar Biol., 11, 425-429 (1991)
  17. Nicolaus B., Improta R., Manca M. C., Lama L., Esposito E. and Gambacorta A., Alicyclobacilli from an unexplored geothermal soil in Antarctica: Mount Rittmann, Polar Biol., 19, 133-141 (1998)
  18. Logan N.A., Lebbe L., Hoste B., Goris J., Forsyth G., Heyndrick M., Murray B.L., Syme N., Wynn-Williams D.D. and De Vos P., Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich Archipelago, with the proposal of Bacillus fumarioli sp. nov., Int. J. Syst. Evol. Microbiol., 50, 1741-1753 (2000)
  19. Allan R.N., Lebbe L., Heyrman J., De Vos P., Buchanan C. J. and Logan N.A., Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica, Int. J. Syst. Evol. Microbiol., 55, 1039-1050 (2005)
  20. Poli A., Esposito E., Lama L., Orlando P., Nicolaus G., de Appolonia F., Gambacorta A. and Nicolaus B., Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica), Syst. Appl. Microbiol., 29, 300-307 (2006)
  21. Llarch A., Logan N.A., Castellvi J., Prieto M. J. and Guinea J., Isolation and characterization of thermophilic Bacillusspp. from geothermal environments on Deception island and south Shetland archipelago. Microb. Ecol., 34, 58-65 (1997)
  22. Muñoz P.A., Flores P.A., Boehmwald F.A. and Blamey J.M., Thermophilic bacteria present in a sample from Fumarole Bay, Deception Island, Antarc. Sci., 23, 549-555 (2011)
  23. Gushterova A., Noustorova M., Tzvetkova R., Spassov G. and Chipeva V., Investigations of the microora in penguin’s excrements in the Antarctic. Bulg. Antarc. Res, Life Sci., 1-7, Pensoft Publishers, Soa-Moscow (1999)
  24. Noustorova M., Gushterova A., Tzvetkova R. and Chipeva V., Investigations of the microora in glaciers from the Antarctic, Bulg. Antarc. Res, Life Sci, 8-12, Pensoft Publishers, Soa-Moscow (1999)
  25. Gesheva V. and Vasileva-Tonkova E. Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources, World J. Microbiol. Biotechnol., 28, 2069-2076 (2012)
  26. Dhawale M.R., Wilson J.J., Khachatourians G.G. and Ingledew W.M., Improved method for detection of starch hydrolysis, Appl. Environ. Microbiol., 44, 747-750 (1982)
  27. Agre N.S., Taxonomy of thermophilic actinomycetes, PhD Thesis, Puschino, Moscow, 5-10 (in Russian) (1986)
  28. Davison J., Genetic exchange between bacteria in the environment, Plasmid42, 73-91 (1999)
  29. Dale J.W. and Park S., Molecular genetics of bacteria, 4th edition, John Wiley & Sons Inc., Chichester, UK (2004)
  30. Michaud L., Di Cello F., Brilli M., Fani R., Giudice A.L., and Bruni V., Biodiversity of cultivable psychrotrophic marine bacteria isolated from Terra Nova Bay (Ross Sea, Antarctica), FEMS Microbiol.Lett.,230, 63-71 (2004)
  31. Herreros M.A., Sandoval H., González L., Castro J.M., Fresno J.M. and Tornadijo M.E., Antimicrobial activity and antibiotic resistance of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese), Food Microbiol., 22, 455-459 (2005)
  32. Miller R.V., Gammon K. and Day M.J., Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica, Can. J. Microbiol., 55, 37-45 (2009)
  33. Siebert J., Hirsch P., Hoffmann B., Gliesche C.G., Peissl K. and Jendrach M., Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace Asgard Range: diversity, properties and interactions, Biodivers. Conserv., 1337-1363 (1996)
  34. Miteva V.I., Sheridan P.P. and Brenchley J.E., Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core, Appl. Environ. Microbiol., 70, 202-213 (2004)
  35. Mindlin S., Soina V., Petrova M. and Gorlenko Z., Isolation of antibiotic resistance bacterial strains from Eastern Siberia permafrost sediments, Russian J. Genetics, 44, 27-34 (2008)
  36. WongC., TamH., AliasS., GonzálezM., González-RochaG. and Domínguez-YévenesM., Pseudomonas and Pedobacter isolates from King George Island inhibited the growth of foodborne pathogens, Polish Polar Res., 32, 3-14 (2011)
  37. O’Brien A., Sharp R., Russell N. and Roller S., Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures, FEMS Microbiol. Ecol., 48, 157-167 (2004)
  38. Kumar N., Singh R.K., Mishra S.K., Singh A.K. and Pachouri U.C., Isolation and screening of soil actinomycetes as source of antibiotics active against bacteria, Int. J. Microbiol. Res., 12-16 (2010)
  39. Tiwari K. and Gupta R.K., Rare actinomycetes: a potential storehouse for novel antibiotics, Crit. Rev. Biotechnol., 32, 108-132 (2012)
  40. Nedialkova D. and Naidenova M., Screening the antimicrobial activity of actinomycete strains isolated from Antarctica, J. Cult. Coll., 29-35 (2004)
  41. Gesheva V. and Vasileva-Tonkova E., Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources, World J. Microbiol. Biotechnol., 28, 2069-2076 (2012)
  42. Schuurmans D.M., Olson B.H. and San Clemente C.L., Production and isolation of thermoviridin, an antibiotic produced by Thermoactinomyces viridis n. sp., Appl. Microbiol., 61-66 (1956)
  43. Moppett C.E., Don T.D. T., Johnson F. and Coronelli C., Structure of thermorubin A, the major orange-red antibiotic of Thermoactinomyces antiobioticus J. Am. Chem. Soc., 94, 3269-3272 (1972)
  44. Kanoh K., Matsuo Y., Adachi K., Imagawa H., Nishizawa M. and Shizuri Y., Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251, J. Antib., 58, 289-292 (2005)
  45. Moran A.C., Martnez M.A. and Siñeriz F., Quantification of surfactin in culture supernatants by hemolytic activity, Biotechnol. Lett., 24, 177-180 (2002)
  46. Vinardell M.P. and Infante M.R., The relationship between the chain length of non-ionic surfactants and their hemolytic action on human erythrocytes, Comp. Biochem. Physiol., Part C, 124, 117-120 (1999)
  47. Banat I.M., Franzetti A., Gandolfi I., Bestetti G., Martinotti M.G., Fracchia L., Smyth T.J. and Marchant R., Microbial biosurfactants production, applications and future potential, Appl. Microbiol. Biotechnol., 87, 427-444 (2010)
  48. Munster U. and De Haan H., The role of microbial extracellular enzymes in the transformation of dissolved organic matter in humic waters, Ecol. Studies, 133, 199-257 (1998)
  49. Ferrer M., Golyshina O., Beloqui A. and Golyshin P.N., Mining enzymes from extreme environments, Curr. Opin. Microbiol., 10, 207-214 (2007)
  50. Gomes J. and Steiner W., Extremophiles and Extremozymes, Food Technol. Biotechnol. 42, 223-235 (2004)
  51. Hristova I., Nedelcheva P., Gushterova A., Paskaleva D. and Krastanov A., Isolation of thermophilic actinomycetes producers of thermostable proteases, In: (Ed. A. Méndez-Vilas), Microbes in Applied Research: Current Advances and Challenges, 423-426 (2012)