6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Identification and Characterization of the YGHL1 Gene from Yellowtail fish (Seriola quinqueradiata) and the evolution of the YGHL1/HIG1 family in Vertebrates

Author Affiliations

  • 1Laboratory of Molecular Cell Physiology, Faculty of Agriculture, Ehime University,3-5-7 Tarumi, Matsuyama 790-8566, JAPAN
  • 2
  • 3
  • 4

Int. Res. J. Biological Sci., Volume 2, Issue (9), Pages 59-68, September,10 (2013)

Abstract

A 1529bp full length cDNA of the yellowtail growth hormone like-1 (YGHL1) from Seriola quinqueradiata was cloned, and its structure, genomic organization and expression were analyzed. The yellowtail YGHL1 gene is composed of three coding exons and one 5' non-coding exon, with putative transcription factor binding sites present in upstream of the transcription site. The YGHL1 in yellowtail fish was highly expressed in brain, gill, heart, and kidney, while no appreciable expression was observed in liver and skeletal muscle. This study also shows the phylogeny and evolution of the YGHL1/HIG1 orthologs in mammals and other vertebrates, by comparing their sequences and syntenic context. According to the deduced peptide sequence alignment, the “YGHL1/HIG1 exon 3 domain” peptide seems to be well conserved in the YGHL1/HIG1 gene family. Our data also suggest that an ancestral locus similar to YGHL1 in Ciona intestinalis underwent duplications to create orthologous loci of the YGHL1/HIG1 family in the vertebrates. The regions encoding the YGHL1/HIG1 paralogs in human and mouse were close to the regions where some homeostatically important genes are clustered. These clusters are prominent in human 3p25-22 and 17q11-12 and their orthologous region in mouse 6D1-6E3 and 11D, showing a concerted evolution between them.

References

  1. Ohno S., Evolution by gene duplication, Springer-Verlag(1970)
  2. Kessel M. and Gruss P., Murine developmental control genes, Science, 249, 374-379 (1990)
  3. Nadeau J.H. and Sankoff D., Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution, Genetics, 147, 1259–1266 (1997)
  4. Gibson T.J. and Spring J., Genetic redundancy in vertebrates: polyploidy and persistence of genes encoding multidomain proteins, Trends Genet., 14, 46-49 (1998)
  5. Otto S.P., The evolutionary consequences of polyploidy, Cell, 131(3), 452-462 (2007)
  6. Gerstein A.C. and Otto S.P., Ploidy and the causes of genomic evolution, J Hered., 100(5), 571-581 (2009)
  7. Taylor J.S., Van de Peer Y., Braasch I. and Meyer A., Comparative genomics provides evidence for an ancient genome duplication event in fish, Philos Trans R Soc LondB Biol Sci.,356, 1661-1679 (2001)
  8. Gray T.A., Hernandez L., Carey A.H., Schaldach M.A., Smithwick M.J., Rus K., Graves J.A.M., Stewart C.L. and Nicholls R.D., The ancient source of a distinct gene family encoding proteins featuring Ring and C3H zinc-finger motifs with abundant expression in developing brain and nervous system, Genomics, 66, 76-86 (2000)
  9. Gray T.A., Azama K., Whitmore K., Min A., Abe S. and Nicholls R.D., Phylogenetic conservation of the makorin-2 gene, encoding multiple zinc-finger protein, antisense to the RAF1 proto-oncogene, Genomics, 77, 119-126 (2001)
  10. Abe S., Chiba S., Mishra N., Minamino Y., Nakasuji H.,Doi M. and Gray T.A., Origin and evolution of the genomic region encoding RAF1, MKRN2, PPARG, and SYN2 in human chromosome 3p25, Mar. Biotechnol., , S404-S412 (2004)
  11. Gracey A.Y., Troll J.V. and Somero G.N., Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis, Proc. Natl. Acad. Sci. U.S.A., 98, 1993-1998 (2001)
  12. Thompson J.D., Higgins D.G. and Gibson T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res., 22, 4673-4680 (1994)
  13. Saitou N. and Nei M., The neighbor-joining method: A new method for reconstructing phylogenetic trees, Mol. Biol. Evol., , 406-425 (1987)
  14. Tamura K., Peterson D., Peterson N., Steker G., Nei M. and Kumar S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28, 2731-2739 (2011)
  15. Kim Y.O., Park E.M., Moon J.Y., Kong H.J., Nam B.H., Kim W.J., Lee J.H., Kim K.K., Lee S.J., Molecular characterization and transcriptional analysis of the olive flounder (Paralichthys olivaceus) YGHL1 gene in response to hypoxia and infection, Mol. Cell. Biochem., 357, 305-312 (2011)
  16. Wenger R.H., Stiehl D.P., Camenisch G., Integration of oxygen signaling at the consensus HRE. Sci STKE,re12(2005)
  17. Ferreira T.C., Hertzberg L., Gassmann M., Campos E.G., The yeast genome may harbor hypoxia response elements (HRE), Comp Biochem Physiol C Toxicol Pharmacol., 146, 255–263 (2007)
  18. Akira S., Isshiki H., Sugita T., Tanabe O., Kinoshita S., Nishio Y., Nakajima T., Hirano T., Kishimoto T., A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family, EMBO J., 9(6), 1897-907 (1990)
  19. Zhang X., Odom D.T., Koo S.H., Conkright M.D., Canettieri G., Best J., Chen H., Jenner R., Herbolsheimer E., Jacobsen E., Kadam S., Ecker J.R., Emerson B., Hogenesch J.B., Unterman T., Young R.A., Montminy M., Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target geneactivation in human tissues, Proc. Natl. Acad. Sci. U.S.A., 102, 4459–4464 (2005)
  20. Angel P., Hess J., The Multi-Gene Family of Transcription Factor AP-1. In: Bradshaw RA, Dennis EA (ed) Regulation of Organelle and Cell Compartment Signaling: Cell Signaling Collection, Academic Press, 53-62 (2011)
  21. Firth J.D., Ebert B.L. and Ratcliffe P.J., Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements, J. Biol. Chem., 270, 21021–21027 (1995)
  22. Ebert B.L. and Bunn H.F., Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia-inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein, Mol. Cell. Biol., 18, 4089–4096 (1998)
  23. Damert A., Ikeda E. and Risau W., Activator-protein-1 binding potentiates the hypoxia-inducible factor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in C6 glioma cells, Biochem. J., 327, 419–423 (1997)
  24. Ramji D.P. and Foka P., CCAAT/enhancer-binding proteins: structure, function and regulation, Biochem. J., 365, 561-575 (2002)
  25. Böhne A., Darras A., D'Cotta H., Baroiller J-F., Galiana-Arnoux D. and Volff J-N., The vertebrate makorin ubiquitin ligase gene family has been shaped by large-scale duplication and retroposition from an ancestral gonad-specific, maternal-effect gene, BMC Genomics,11, 721 (2010)
  26. Dehal P., Satou Y., Campbell R.K., Chapman J., Degnan B., De Tomaso A., Davidson B., Di Gregorio A., Gelpke M., Goodstein D.M., Harafuji N., Hastings K.E., Ho I., Hotta K., Huang W., Kawashima T., Lemaire P., Martinez D., Meinertzhagen I.A., Necula S., Nonaka M., Putnam N., Rash S., Saiga H., Satake M., Terry A., Yamada L.,Wang HG., Awazu S., Azumi K., Boore J., Branno M., Chin-Bow S., DeSantis R., Doyle S., Francino P., Keys DN., Haga S., Hayashi H., Hino K., Imai KS., Inaba K., Kano S., Kobayashi K., Kobayashi M., Lee BI., Makabe KW., Manohar C., Matassi G., Medina M., Mochizuki Y., Mount S., Morishita T., Miura S., Nakayama A., Nishizaka S., Nomoto H., Ohta F., Oishi K., Rigoutsos I., Sano M., Sasaki A., Sasakura Y., Shoguchi E., Shin-i T., Spagnuolo A., Stainier D., Suzuki M.M., Tassy O., Takatori N.,Tokuoka M., Yagi K., Yoshizaki F., Wada S., Zhang C., Hyatt PD., Larimer F., Detter C., Doggett N., Glavina T., Hawkins T., Richardson P., Lucas S., Kohara Y., Levine M., Satoh N., Rokhsar D.S., The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins, Science, 298, 2157– 2167 (2002)
  27. Guo D., Holmlund C., Henriksson R. and Hedman H., The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues, and a homolg in Ascidiacea, Genomics,84, 157–165 (2004)
  28. Coulier F., Popovici C., Villet R. and Birnbaum D., MetaHox gene clusters, J. Exp. Zool. 288, 345–351 (2000)
  29. Caron H., van Schaik B., van der Mee M., Baas F., Riggins G., van Sluis P., Hermus M.C., van Asperen R., Boon K.,Voute P.A., Heisterkamp S., van Kampen A., VersteegR., The human transcriptome map: Clustering of highly expressed genes in chromosomal domains, Science291, 1289 (2001)
  30. Hurst L.D., Pal C. and Lercher M.J., The evolutionary dynamics of eukaryotic gene order, Nat. Rev. Genet., , 299-310 (2004)
  31. Khaitovich P., Muetzel B., She X.W., Lachmann M., Hellmann I., Dietzsch J., Steigele S., Do H.H., Weiss G., Enard W., Heissig F., Arendt T., Nieselt-Struwe K., Eichler E.E. and Paabo S., Regional patterns of gene expression in human and chimpanzee brains, Genome Res., 14, 1462-1473 (2004)
  32. Liu C., Ghosh S., Searls D.B., Saunders A.M., Cossman J., Roses A.D., Clusters of adjacent and similarly expressed genes across normal human tissues complicate comparative transcriptomic discovery,Omics, , 351-363 (2005)
  33. Singer G.A., Lloyd A.T., Huminiecki L.B. and Wolfe K.H., Clusters of co-expressed genes in mammalian genomes are conserved by natural selection,Mol. Biol. Evol., 22767-775 (2005)
  34. Purmann A., Toedling J., Schueler M., Carninci P., Lehrach H., Hayashizaki Y., Huber W. and Sperling S., Genomic organization of transcriptomes in mammals: Coregulation and cofunctionality, Genomics, 89, 580-587 (2007)
  35. Kozak M., Initiation of translation in prokaryotes and eukaryotes, Gene,234, 187-208 (1999)