9th International Science Congress (ISC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Nanobiosensors: Diagnostic Tool for Pathogen Detection

Author Affiliations

  • 1Department of Chemistry, D.A.V (P.G.) College, Dehradun-248001, Uttarakhand, INDIA
  • 2 District coordinator, Uttarakhand State council for Science and Technology (UCOST), Dehradun, Uttarakhand, INDIA
  • 3 Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-29, INDIA
  • 4 Theriogenology Lab, National Dairy Research Institute, Karnal - 132001, Haryana, INDIA
  • 5 Biophysics and Nanotechnology, C.B.S.& H.G.B. Pant University of Agriculture and technology, Pantnagar-263145, Uttarakhand, INDIA

Int. Res. J. Biological Sci., Volume 2, Issue (10), Pages 76-84, October,10 (2013)

Abstract

Biosensors could be a thrilling alternative to the conventional systems for the detection of toxins and pathogens. Biosensors are reliable which allow the specific detection of target analyte at minimum cost. Recent advancement in the field of nanotechnology has been used to develop highly sensitive bio-sensor’s chips by using multidisciplinary approach. This strategy could be seen as a key for developing bio-sensing devices and demonstrates rapid responses combined with high sensitivity and specificity. Indeed, these traits have nearly become standard attributes of this technological development and come up from the extremely high surface and small size nanostructure areas as nanotubes, nanowires and nanoparticles. In view of above, it is acceptable to state that biosensor technology has the prospective to augment the sensitivity and specificity, hasten the detection and enable high-throughput analysis.

References

  1. Cavalcanti A., Shirinzadeh B., Zhang M. and Kretly L.C., Nanorobot Hardware Architecture for Medical Defense, Sensors, 8 (5), 2932–2958 (2008)
  2. Rasooly A., Guest Editorial, Moving biosensors to point-of-care cancer diagnostics, Biosensors and Bioelectronics, 21,1847–1850 (2006)
  3. Newman J.D. and Turner A.P.F., Home blood glucose biosensors: a commercial perspective, Biosensors and Bioelectronics,20, 2435–2453 (2005)
  4. Cai Z., Song Y., Wu Y., Zhu Z., James Y.C. and Chen X., An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA, Biosens Bioelectron. doi:pii: S0956-5663(12)00677-X. 10.1016/j.bios.2012.10.002. (2012)
  5. Park B.W., Zheng R., Ko K.A., Cameron B.D., Yoon D.Y. and Kim D.S., A novel glucose biosensor using bi-enzyme incorporated with peptide nanotubes, Biosens Bioelectron. doi: 10.1016/j.bios.2012.06.005. (2012)
  6. Chouteau C., Dzyadevych S., Chovelon J.M. and Durrieu C., Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgarismicroalgae, Biosens. Bioelectron, 19, 1089–1096 (2004)
  7. Zhou D., Han Y. and Yang, R., Molecular and physiological insights into plague transmission, virulence and etiology, Microbes Infect,8(1), 273-284 (2006)
  8. Kulys J. and Baronas R., Modelling of amperometric biosensors in the case of substrate inhibition, Sensors,, 1513–1522 (2006)
  9. Sezgintürk M.K., Göktugw T. and Dinçkaya E., Detection of benzoic acid by an amperometric inhibitor biosensor based on mushroom tissue homogenate, Food Technol. Biotechnol, 43(4), 329–334 (2005)
  10. Evtugyn G.A., Goldfarb O.E., Budnikov H.C., Ivanov A.N. and Vinter V.G., Amperometric DNA-Peroxidase sensor for the detection of pharmaceutical preparations, Sensors,5,364-376 (2005)
  11. Arvinte A., Valentini F., Radoi A., Arduini F., Tamburri E., Rotariu L., Palleschi G. and Bala C., The NADH electrochemical detection performed at carbon nanofibers modified glassy carbon electrode, Electroanalysis, 19, 1455-1459 (2007)
  12. Ming L., Xi X. and Liu J., Electrochemically platinized carbon paste enzyme electrodes: A new design of amperometric glucose biosensors, Biotech. Letters, 28,1341-1345 (2006)
  13. Stefan R.I., Bokretsion R.G., van Staden J.F., Aboul-Enein H.Y., Simultaneous determination of creatine and creatinine using amperometric biosensors, Talanta.,60, 844–847 (2003)
  14. Stefan R.I., Nejem R.M., Van Staden J.F. and Aboul-Enein H.Y., New amperometric biosensors based on diamond paste for the assay of l- and d- pipecolic acids in serum samples, Prep. Biochem. and Biotech.,34, 135–144 (2004)
  15. Lakard B., Herlem G., Lakard S., Antoniou A. and Fahys B., Urea potentiometric biosensor based on modified electrodes with urease immobilized on polyethylenimine films, Biosens. Bioelectron., 19, 1641–1647 (2004)
  16. Campbell D.W., Müller C. and Reardon K.F., Development of a fiber optic enzymatic biosensor for 1, 2-dichloroethane, Biotech. Letters,28, 883–887 (2006)
  17. Cao C. and Sim S.J., Signal enhancement of surface plasmon resonance immunoassay using enzyme precipitation-functionalized gold nanoparticles: A femto molar level measurement of anti-glutamic acid decarboxylase antibody, Biosens. Bioelectron, 22, 1874-1880 (2007)
  18. Horswell J., Weitz H.J., Percival H.J. and Speir T., Impact of heavy metal amended sewage sludge on forest soils as assessed by bacterial and fungal biosensors, Biol. fertil. Soils,42, 569–576 (2006)
  19. Li F. and Jiang Z., Design and analysis of a biosensor transducer with multifunctions, J. Intelligent Mat. Syst. Struct.,17, 823-830 (2006)
  20. Sauerbrey G., Use of quartz crystal vibrator for weighting thin films on a microbalance, Z. Phys.,155, 206–222 (1959)
  21. Wang F. and Hu S., Electrochemical sensors based on metal and semiconductor nanoparticles, Microchim. Acta., 165, 1–22 (2009)
  22. Nam J.M., Thaxton C.S. and Mirkin C.A., Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins, Science,301(5641) , 1884-1886 (2003)
  23. Jin R., Xing Y., Yu X., Sun S., Yu D., Wang F., Wu W. and Song S., Facile Synthesis of Well-Dispersed Silver Nanoparticles on Hierarchical Flower-like Ni(3) Si(2) O(5) (OH)(4) with a High Catalytic Activity towards 4-Nitrophenol Reduction, Chem. Asian J.,7(12), 2955-2961 (2012)
  24. Regiel A., Irusta S., Kyzio\n A., Arruebo M. and Santamaria J., Preparation and characterization of chitosan-silver nanocomposite films and their antibacterial activity against Staphylococcus aureus, Nanotechnology,24(1) 015101 (2013)
  25. G´omez R., Bashir R., Sarikaya A., Ladisch M.R., Sturgis J., Robinson J.S., Geng T., Bhunia A.K., Apple H.L., Wereley S., Biomed, Microdevices,3(3), 201–209 (2001)
  26. Gau J.J., Lan E.H., Dunn B., Ho C.M., Woo J.C., A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers, Biosens Bioelectron. 16(9-12), 745-755 (2001)
  27. Mura S., Greppi G., Marongiu M.L., Roggero P.P., Ravindranath S.P., Mauer L.J., Schibeci N., Perria F., Piccinini M., Innocenzi P., Irudayaraj J., 2012, FTIR nanobiosensors for Escherichia coli detection. Beilstein J. Nanotechnol. 3, 485-492 (2012)
  28. Yoon JY, Kim B. Lab-on-a-chip pathogen sensors for food safety. Sensors (Basel).,12 (8), 10713-41 (2012)
  29. Wang Y., Knoll W., Dostalek J., Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays. Anal Chem.,84 (19), 8345-8350 (2012)
  30. Cheng M.S., Ho J.S., Tan C.H., Wong J.P., Ng L.C., Toh, C.S., Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus. Anal Chim Acta., 725, 74-80 (2012)