10th International Science Congress (ISC-2020) will be Postponed to 8th and 9th December 2021 Due to COVID-19.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Impact of Wildlife DNA Forensics in Nepal: a short term case Review

Author Affiliations

  • 1National Forensic Science Laboratory, Khumaltar, Lalitpur, NEPAL
  • 2National Forensic Science Laboratory, Khumaltar, Lalitpur, NEPAL
  • 3National Forensic Science Laboratory, Khumaltar, Lalitpur, NEPAL
  • 4National Forensic Science Laboratory, Khumaltar, Lalitpur, NEPAL
  • 5National Forensic Science Laboratory, Khumaltar, Lalitpur, NEPAL

Res. J. Forensic Sci., Volume 8, Issue (2), Pages 28-37, July,29 (2020)


Forensics in Nepal has recently started wildlife species identification using method of DNA sequencing. Although non-genetic based identification remains the first priority, sequencing technique is helpful when the sample is unidentifiable by routine methods. The article focuses on the type of wildlife evidences received and analysed by DNA sequencing in the recent years at National Forensic Science Laboratory of Nepal. The DNA based identification of wildlife materials has aided in further proceedings and prosecution.


  1. Hariyo Ban Program (2017)., Assessment of Poaching and Illegal Wildlife Trafficking in Banke-Kamdi Complex., http://www.wwfnepal.org
  2. Moore, J. E. (1988)., A Key for the identification of animal hairs., J Forensic Sci Soc, 28(5-6), 335-339. https://doi.org/10.1016/S0015-7368(88)72862-5
  3. Tobe, S. S., & Linarce, A. (2011)., An overview to the investigative approach to species testing in wildlife forensic science., Investigative Genetics, 2(2), 1-9. https://doi.org/10.1186/2041-2223-2-2
  4. Panday, R., Jha, D., Thapa, N., Pokhrel, B., & Aryal, N. (2014)., Forensic wildlife parts and their product identification and individualisation using DNA Barcoding., The open Forensic Science Journal, 7(7), 6-13.
  5. Tobe, S. S., & Linarce, A. M. (2008)., A multiplex assay to Identify 18 European mammal species from mixtures using the mitochondrial cytochrome b gene., Electrophoresis, 29(2), 340-347. https://doi.org/10.1002/elps.200700706
  6. Lee, J. C., TsaiL, C., Yang, C. Y., Liu, C. L., Huang, L. H., Linarce, A., et al. (2006)., DNA profiling of Shahtoosh., Electrophoresis, 27(17), 3359-3362. https://doi.org/ 10.1002/elps.200600062
  7. Pereira, F., Carneiro, J., & Amorim, A. (2008)., Identification of Species with DNA based Technology: Current progress and challenges., Recent patents on DNA and Gene sequences, 2(3), 187-200. https://doi.org/10.2174/187221508786241738
  8. Simon, C., Buckley, T. R., Frati, F., Stewart, J. B., & Beckenbach, A. T. (2006)., Incorporating molecular evolution into phylogenetc analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA., Ann Rev Ecol Evolution Systematics, 37(1), 545-579. https://doi.org/10.1146/annurev.ecolsys. 37.091305.110018
  9. Pfeiffer, H., Benthaus, S., Rolf, B., & Brinkmann, B. (2003)., The Kaisers Tooth., Int J Legal Med, 117(2), 118-120. https://doi.org/10.1007/s00414-002-0336-5
  10. Ginther, C., Issel-Tarver, L., & King, M. C. (1992)., Identifying Individuals by sequencing mitochondrial DNA from Teeth., Nature Genetics, 2(2), 135-138. https://doi.org/10.1038/ng1092-135
  11. Loreille, O. M., Diegoli, T. M., Irwin, J. A., Coble, M. D., & Parsons, T. J. (2007)., High efficiency DNA extraction from bone by total demineralisation., Forensic Sci Int Genetics, 1(2), 191-195. https://doi.org/10.1016/j.fsigen. 2007.02.006
  12. Anslinger, K., Weichhold, G., Keil, W., Bayer, B., & Eisenmenger, W. (2001)., Identification of the skeletal remains of Martin Bormann by mtDNA analysis., Int J Legal Med, 114(3), 194-196. https://doi.org/10.1007/ s004140000176
  13. Parson, W. (2009)., Relevance of mtDNA analysis for forensic applications., Rechtsmedizin, 19(3), 183-192.
  14. Allen, M., Engstrom, A.S., Meyer, S.S., Handt, O., Saldeen, T., Von Haeseler, A., Paabo, S. and Gyllensten, U. (1998)., Mitochondrial DNA sequencing of shed hairs and saliva on robbery caps: Sensitivity and matching probablities., J Forensic Sci, 43(3), 453-464.
  15. Balitzki-Korte, B., Anslinger, K., Bartsch, C., & Rolf, B. (2005)., Species identification by means of pyrosequencing the mitochondrial 12S RNA gene for species identification., Int J Legal Med, 119(5), 291-294. https://doi.org/10.1007/s00414-005-0537-9
  16. Melton, T., & Holland, C. (2007)., Routine forensic use of the mitochondrial 12 Sribosomal RNA gene for species identification., J Forensic Sci, 52(6), 1305-1307. https://doi.org/10.1111/j.1556-4029.2007.00553.x
  17. Rajput, N., Shrivastav, A. B., Parmar, S. N. S., Ranjan, R., Singh, S., & Joseph, E. (2013)., Characterisation of 12 SRRNA gene for meat identification of common wild and domestic small herbivores as an aid to wildlife forensic., Vet world, 6(5), 254-259. https://doi.org/10.5455/vetworld
  18. Mitani, T., Akane, A., Tokiyasu, T., Yoshimura, S., Okii, Y., & Yoshida, M. (2009)., Identification of animal species using the partial sequences in the mitochondrial 16SrRNA gene., Leg Med (Tokyo), 11(1), 449-450. https://doi.org/ 10.1016/j.legalmed.2009.02.002
  19. Tobe, S., & Linacre, A. (2007)., Species identification of human and deer from mixed biological material., Forensic Sci Int, 169(2-3), 278-279. https://doi.org/10.1016/ j.forsciint.2006.07.016
  20. Marian, de Pancorbo, M., A, Castro., Fernandez-Fernandez, I., Gonzalez Fernandez, M., Martinez-Bouzas, C., & Cuevas, N. (2003)., Cytochrome b and HVI sequences of mitochondrial DNA to identify domestic animal hair in forensic casework., Int Congress Series, 1239, 841-845. https://doi.org/10.1016/S0531-5131(02)00592-7
  21. Wan, Q. H., & Fang, S. G. (2003)., Application of species-specific polymerase chain reaction in the forensic identification of tiger species., Forensic Sci Int, 131(1), 75-78. https://doi.org/10.1016/s0379-0738(02)00398-5
  22. Wetton, J. H., Tsang, C. S., Roney, C. A., & Spriggs, A. C. (2002)., An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA., Forensic Sci Int, 126(2), 137-144. https://doi.org/10.1016/s0379-0738 (02)00045-2
  23. Hsieh, H. M., Huang, L. H., TsaiL, C., Liu, C. L., Kuo, Y. C., Hsiao, C. T., Linacre, A., Lee and J. C. (2006)., Species identification of Kachuga tecta using the cytochrome b gene., J Forensic Sci, 51(1), 52-56. https://doi.org/10.1111/ j.1556-4029.2005.00004.x
  24. Rohilla, M. S., & Tiwari, P. K. (2008)., Restriction fragment length polymorphism of mitochondrial DNA and phylogenetic relationships among five species of Indian freshwater turtles., J Appl Genetics, 49(2), 167-182. https://doi.org/10.1007/BF03195610
  25. Meganathan, P. R., Dubey, B., & Haque, I. (2009)., Molecular identification of crocodile species using novel primers for forensic analysis., Conservation Genetics, 10(3), 767-770. https://doi.org/10.1007/s10592-008-9658-2
  26. Hsieh, H. M., Huang, L. H., Tsai, L. C., Kuo, Y. C., Meng, H. H., Linacre, A. and Lee, J. C (2003)., Species identification of Rhinoceros horns using the cytochromeb gene., Forensic Sci Int, 136(1-3), 1-11. https://doi.org/ 10.1016/s0379-0738(03)00251-2
  27. Lee, J C., Hsieh, H. M., & Huang, L. H., Kuo, Y. C., Wu, J. h., Chin, H. C., Lee, A. H., Linacre, A., & Tsai, L. C. (2009)., Ivory identification by DNA profiling of cytochrome b gene., Int J Legal Med, 123(2), 117-121. https://doi.org/10.1007/s00414-008-0264-0
  28. Gupta, S. K., Verma, S. K., & Singh, L. (2005)., Molecular insight into a wildlife crime: the case of a peafowl slaughter., Forensic Sci Int, 154(2-3), 214-217. https://doi.org/10.1016/j.forsciint.2004.12.010
  29. Peppin, L., Mc Ewing, R., Carvalho, G. R., & Ogden, R. (2008)., A DNA based approach for the forensic identification of Asiatic Black Bear (Ursus thibetanus) in a traditional Asian medicine., J Forensic Sci, 53(6), 1358-1362. https://doi.org/10.1111/j.1556-4029.2008.00857.x
  30. Tobe, S. S., & Linacre, A. (2009)., Identifying endangered species from degraded mixtures at low levels., Forensic Sci Int, 2(1), 304-305. https://doi.org/10.1016/j.fsigss. 2009.08.052
  31. Tobe, S. S., Kitchener, A. C., & Linacre, A. M. (2010)., Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes., PLoS One, 5(11). https://doi.org/10.1371/journal.pone.0014156
  32. Pun, K.M., Albrecht, C., Castella, V., & Fumagalli, L. (2009)., Species identification in mammlas from mixed biological samples based on mitochondrial DNA control region length polymorphism., Electrophoresis, 30(6), 1008-1014. https://doi.org/10.1002/elps.200800365
  33. Fumagalli, L., Cabrita, C. J., & Castella, V. (2009)., Simultaneous identification of multiple mammalian species from mixed forensic samples based on mtDNA control region length polymorphism., Forensic Sci Int: Genetics Suppl Series, 2(1), 302-303. https://doi.org/10.1002/elps.200800365
  34. Nilsson, R. H., Ryberg, M., Kristiansson, E., Abarenkov, K., Larsson, K. H., & Koljalg, U. (2006)., Taxonomic Reliability of DNA Sequences in public Sequence Databases: A Fungal Perspective., PLoS ONE, 1(1). https://doi.org/10.1371/journal.pone.0000059
  35. Nishant, K., Vrijesh, K. Y., & Ajay, K. R. (2017)., Wildlife Forensic: Current Techniqus and their Limitations., J Forensic Sci Criminol, 5(3), 306.
  36. Kumar, V., & Neelkamal (2015)., Wildlife DNA evidence: Recognition, Collection and Preservation., Research Journal of Forensic Sciences, 3(7), 8-15.
  37. National Parks and Wildlife Conservation Act (1973). https://www.lawcommission.gov.np, undefined, undefined
  38. CITES ACT, Nepal (2017). https://www.lawcommission. gov.np, undefined, undefined
  39. D, Bensky., A, Gamble., & T, Kaptchuk. (1993)., Chinese herbal medicine materia medica, Revised Edition, Eastland press, Seattle. ISBN-13: 978-0939616824, undefined
  40. Garshelis, D., & Steinmetz, R. (2016)., Ursus Thibetanus. The IUCN Red list of Threatened Species., https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T2282 4A45034242.en
  41. Bhiksu,W. H. (2002)., The bear bile bussiness: The global trade in Bear products from China to Asia and beyond., WSPA (World society for Protection of Animals).
  42. Lin, D. L., Chang, H. C., & Chen, C. Y. (2000)., Identification and Quantification of Bile Acids in Bear bile by HPLC., Journal of Food and Drug analysis, 8(4), 283-288.
  43. Theis, J.H., DeRopp, J.S., Schwab, R..G., Banks, J., & Levine, K. (1988)., NMR to differentiate Bear, Pig and Cow bile for Forensic investigations., Wildlife Society Bulletin, 16(4), 430-433.
  44. Espinoza, E.O., Shafer, J.A., & Hagey, L.R. (1993)., International trade in bear gallbladders:Forensic source inference., J forensic sci, 38(6), 1363-71.
  45. Lin, D.L., Chang, H.C., Chang, C.P., & Chen, C.Y. (1997)., Identification and differentiation of Bear bile used in medicinal products in Taiwan., J forensic sci, 42(5), 817-23.
  46. Milner-Gulland, E.J. and Bennett, E.L. (2003)., Wild meat: The bigger picture., Trends Col. Evol, 18, 351-357. https://doi.org/10.1016/S0169-5347(03)00123-X
  47. Bajracharya, S.B., Furley, P.A., & Newton, A.C. (2005)., Effectiveness of community involvement in delivering conservation bnefits to the Annapurna conservation area, Nepal., Environ. conserv, 32, 239-247. https://doi.org/ 10.1017/S0376892905002298
  48. Bennet, E.L., & Rao, M. (2002)., Wild meat consumption in Asian tropical forest countries. Is this a glimpse of the future for Africa? Links between Biodiversity, conservation, Livelihoods and Food Security: The Sustainable Use of Wild Species for Meat., Occassional Paper of IUCN Species survival commission No.24, pp 39-44.
  49. Bhattarai, B., Wright, W., & Khatiwada, Pd. A. (2016)., Illegal hunting of prey species in the Northern section of Bardia National park, Nepal: Implications for carnivore conservation., Environments, 3(4). https://doi.org/10.3390/ environments3040032
  50. llhak, O.I., & Arslan, A. (2007)., Identification of Meat species by Polymerase chain reaction (PCR) technique., Turk. J. Vet. Anim Sci, 31(3), 159-163.
  51. Kumar, V., Chandra, K., Kundu, S., Tyagi, K., Laska, B.A., Singha, D.et al. (2018)., Utility of Mitochondrial DNA in Wildlife Forensic Science: Reliable identification of confiscated materials from eastern India., Mitochondrial DNA part B, 4(1), 583-588. https://doi.org/10.1080/ 23802359.2018.1561216
  52. Gupta, S.K., Kumar, A., Hussain, S.A., Vipin., & Singh, L. (2013)., Cytochromeb based genetic differentiation of indian wild pig (Sus scrofa cristatus) and domestic pig (Sus scrofa domestica) and its use in wildlife forensics. Sci. Justice, 53(2), 220-222. https://doi.org/10.1016/j.scijus. 2012.09.005, undefined
  53. Leslie, D. M., J. R., & Schaller, B. G. (2009)., Bos grunniens and Bos mutus (Artiodactyla: Bovidae)., American society of mammalogists, 836, 1-17.
  54. Convention on International trade in Endangered species of wild fauna and flora, Appendices I, II and III (2019). https://www.cites.org/sites/default/files/eng/app/2019/E-Appendices-2019-11-26.pdf, undefined, undefined
  55. Wang, Z., Shen, X., Liu, B., Su, J., Yonezawa, T., and Yu, Y et al. (2010)., Phylogeographical analyses of domestic and wild yaks based on mitochondrial DNA: new data and reappraisal., Journal of Biogeography, 37(12), 2332-2344. https://doi.org/10.1111/j.1365-2699.2010.02379.x
  56. GuoS, C., Savolainen, P., Jianpin, Su., Qian, Zhang., Delin, Qi., Jie, Zhou, et al. (2006)., Origin of mitochondrial DNA diversity of domestic Yaks., BMC Evolutionary Biology, 6(73).
  57. Bhatnagar, Y. V., & Lovari, S. (2008)., Hemitragus jemlahicus., The IUCN red list of threatened species. https://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T9919A13027389.en.
  58. Ewart, K.M., Frankham, G., McEwing, R., Webster, L.M.I., Ciavaglia, S.A., Linacre, A.M.T., The, D.T., Ovouthan, K., & Johnson, R.N. (2018)., An internationally standarised species identification test for us on suspected seized rhinoceros horn in the illegal wildlife trade., Forensic science international: Genetics, 32, 33-39. https://doi.org/ 10.1016/j.fsigen.2017.10.003
  59. Pilli, E., Casamassima, R., Vai, S., Virgili, A., Barni, F., DErrico, G., Berti, A., Lago, G., & Caramelli, D. (2014)., Pet fur or fake fur? A forensic approach., Investigative Genetics, 5(7), 2041-2223. https://doi.org/10.1186/2041-2223-5-7
  60. Yun, S. C., LiHu., Haolong Hou., Hang Lee., Jiahui Xu., Soowhan Kwon, et al. (2013)., The Tiger Genome and comparative analysis with Lion and Snow leopard genomes., Nature communications, 4(2433). https://dx.doi.org/10.1038ncomms3433
  61. Karmacharya, D., Sherchan, A. M., Dulal, S., Manadhar, P., Manadhar, S., & Joshi, J. (2018)., Species, sex and geo-location identification of seized tiger (Panthera tigris tigris) parts in Nepal-A molecular forensic approach., PLos ONE, 13(8). https://doi.org/10.1371/journal.pone.0201639
  62. Khedkar, T., Sharma, R., Tiknaik, A., Khedkar, G., Naikwade, B.S., & Ron, T. et al. (2016)., DNA barcoding using skin exuviates can improve identification and biodiversity studies of snakes., Mitochondrial DNA A Mapp Seq Anal, 27(1), 499-507. https://doi.org/10.3109/ 19401736.2014.905830
  63. Stuart, B., Wogan, G., Grismer, L., Auliya, M., Inger, R.F., Lilley, R., Chan Ard, T., Thy, N., Nguyen, T.Q., Srinivasulu, c., & Jelic, D. (2012)., Ophiophagus hannah.The IUCN Red List of Threatened Species., https://dx.doi.org/10.2305/IUCN.UK.2012-1.RLTS.T177 5 40A1491874.en.
  64. Sunutcha, S., Lawan, C., & Montri, S. (2014)., Phylogenetic analysis of the king cobra, ophiophagus hannah in Thailand based on mitochondrial DNA sequnces., Asian Biomedicine, 8(2), 269-274. https://doi.org/10.5372/1905-7415.0802.289
  65. Haiping, zhao., Xiaoyan, Qi., & Chunyi, Li. (2018)., Complete mitochondrial genome of the muskrat (Ondatra zibethicus) and its unique phylogenetic position estimated in Cricetidae., Mitochondrial DNA part B Resources, 3(1), 296-298. https://doi.org/10.1080/23802359.2017.1390402
  66. Skyriene, G. (2012)., Distribution of invasive muskrats (Ondatra zibethicus) and impact on ecosystem., Ekologija, 58(3), 357-367.
  67. Gibert, M.T.P., Hansen, A.J., Willerslev, E., Rudbeck, L., Barnes, I., Lynnerup, N.et al. (2003)., Characterisation of genetic miscoding lesions caused by postmortem damage., Am J Hum Genet, 72, 48-61. https://doi.org/10.1086 /345379
  68. Bar, W., Kratzer, A., Machler, M., & Schmid, W. (1988)., Post mortem stability of DNA., Forensic sci int, 39, 59-70. https://doi.org/10.1016/0379-0738(88)90118-1
  69. Jha, D., Kshetry, N., Pokharel, B., Lal, S., & Panday, R. (2017)., Identification and differentiation of the asian elephant ivory by using schreger lines., Journal of Institute of Science and Technology, 22(1), 99-103. https://doi.org/ 10.3126/jist.v22i1.17745
  70. James, Chun-ILee., Hsing-Mei Hsieh., Li-Hung Huang., Yi-Chen Kuo., Jane-Hong Wu., Shih-Chien Chin., et al. (2009)., Ivory identification by DNA profiling of cytochrome b gene., Int J Legal Med, 123, 117-121. http://doi.org/10.1007/s00414-008-0264-0
  71. Latham, K.E., & Miller, J.J. (2019)., DNA recovery and analysis from skeletal material in modern forensic contexts., Forensic Sciences Research, 4(1), 51-59. https://dx.doi.org/10.1080%2F20961790.2018.1515594
  72. Latham, K.E., & Madonna, M.E. (2013)., DNA survivability in skeletal remains., Manuals of molecular taphonomy, 404-426. https://doi.org/10.1201/b15424-16
  73. Speller, C.F., Nicholas, G.P., & Yang, D.Y. (2011)., Feather barbs as a good source of mtDNA for bird species identification in forensic wildlife investigations., Investigative Genetics, 2(16). https://doi.org/10.1186/2041-2223-2-16
  74. Bird Life International (2020)., Species factsheet: Tragopan satyra., http://www.birdlife.org
  75. Singh, B.P., Khatiwada, R.J., Saud, P., Jang, Z. (2019)., mtDNA Analysis confirms the endangered kashmir muskdeer extends its range to Nepal., Scientific reports, 9 (4895).https://doi.org/10.1038/s41598-019-41167-4