9th International Science Congress (ISC-2019).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Indian-Eurasian collision, structure, and convergence in the western Himalayan syntaxis along Pamir-Tajikistan -A short review

Author Affiliations

  • 1Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China and COMSATS University Islamabad, Abbottabad-Campus 22060, Pakistan and University of Chinese Academy of Science,No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R. China 100049
  • 2Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China and University of Chinese Academy of Science,No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R. China 100049
  • 3Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
  • 4Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China and COMSATS University Islamabad, Abbottabad-Campus 22060, Pakistan and University of Chinese Academy of Science,No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R. China 100049
  • 5Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China and University of Chinese Academy of Science,No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R. China 100049

Int. Res. J. Earth Sci., Volume 6, Issue (8), Pages 11-19, August,25 (2018)

Abstract

The Indian-Eurasian collision resulted in several geological structures along the collisional belt. and among them, Pamir is one of the remarkable features developed along the western syntaxis. Pamir shares a similar trend of the tectonic evolution of the Indian plate subduction beneath the Tibetan plateau during the Cenozoic era. Pamir is subdivided into northwestern, central, eastern and southwestern parts according to its structural variation. According to the fundamentals of plate tectonics, the crustal shortening results in thickening of the mantle; although the principal factor is mostly related to the rheology of the crust-mantle and the collisional rate. During the continental-continental collision, both plates resist subduction due to their buoyancy and the only justification for the resultant subduction is Wilson last cycle. The difference in the Indian-Eurasian tectonics is mainly due to the reduction in convergence rate i.e. 110mm/yr prior to 50Ma, which was reduced to 50mm/yr in 30-40Ma. The average magnitude of crustal shortening between Pamir and Tien Shan orogenic belt is estimated to be 10-700km. Different geophysical and geological studies reveal that the western segment of the Indian- Eurasian collisional belt is experiencing double subduction mechanism; a steeply northward dipping Indian plate under the Hindukush region and the southward-dipping Eurasian plate under the Pamir. The initial breakage of Indian plate was during the early stages of collision (44-48Ma) while the second break-off event occurred during the middle-Miocene (~15 Ma). Moreover, in the westernregion, the subduction process was continued until it reached the present state of the Hindukush region i.e. ~8Ma, that could be the possible reason for the structural similarities between the central and the western collisional regions. The paleomagnetic studies reveal the counter-clockwise rotation of the Pamir plateau as much as ~52° during Miocene.

References

  1. Negredo A.M., Replumaz A., Villaseñor A. and Guillot S. (2007)., Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region., Earth and Planetary Science Letters, 259(1-2), 212-225. doi:http://dx.doi.org/10.1016/j.epsl.2007.04.043.
  2. Sarkar I. and Sanyal S. (2004)., Static stress transfers in the Pamir Hindu Kush seismic zone., Journal of Asian Earth Sciences, 23(4), 449-459. doi:http://dx.doi.org/10.1016/ S1367-9120(03)00178-0 .
  3. Powell C.M. and Conaghan P.J. (1975)., Tectonic models of the Tibetan plateau., Geology, 3(12), 727-731.
  4. Argand E. (1924)., La tectonique de l, Internat. Geol. Cong., 13th, Brussels, Comptes Rendus, 5, 171-372.
  5. Taylor M. and Yin A. (2009)., Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism., Geosphere, 5(3), 199-214.
  6. Replumaz A., Capitanio F.A., Guillot S., Negredo A.M. and Villaseñor A. (2014)., The coupling of Indian subduction and Asian continental tectonics., Gondwana Research, 26(2), 608-626. doi:http://dx.doi.org/10.1016/j.gr.2014. 04.003.
  7. Burtman V.S. (2000)., Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene., Tectonophysics, 319(2), 69-92. doi:10.1016 /s0040-1951(00)00022-6.
  8. Wilson J.T. and Burke K. (1972)., Two types of mountain building., Nature, 239, 448-449.
  9. Wilson J.T. (1968)., Static or mobile earth: the current scientific revolution., Proceedings of the American Philosophical Society, 112(5), 309-320.
  10. Wilson J.T. (1973)., Mantle plumes and plate motions., Tectonophysics, 19(2), 149-164.
  11. Sippl C., Schurr B., Tympel J., Angiboust S., Mechie J., Yuan X. and Haberland C. (2013)., Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography., Earth and Planetary Science Letters, 384, 165-177. doi:http://dx.doi.org/10.1016/j.epsl.2013.10.013.
  12. Toussaint G., Burov E. and Avouac J.P. (2004)., Tectonic evolution of a continental collision zone: A thermomechanical numerical model., Tectonics, 23(6).
  13. Burov E. and Toussaint G. (2007)., Surface processes and tectonics: forcing of continental subduction and deep processes., Global and Planetary Change, 58(1-4), 141-164. doi:http://dx.doi.org/10.1016/j.gloplacha.2007.02.009.
  14. Lee C. and King S.D. (2011)., Dynamic buckling of subducting slabs reconciles geological and geophysical observations., Earth and Planetary Science Letters, 312(3-4), 360-370. doi:http://dx.doi.org/10.1016/ j.epsl. 2011.10.033.
  15. Burtman V.S. and Molnar P. (1993)., Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir., Geological Society of America Special Papers, 281, 1-76.
  16. Fuchs M.C., Gloaguen R., Krbetschek M. and Szulc A. (2014)., Rates of river incision across the main tectonic units of the Pamir identified using optically stimulated luminescence dating of fluvial terraces., Geomorphology, 216, 79-92. doi:10.1016/j.geomorph.2014.03.027.
  17. Stübner K., Ratschbacher L., Rutte D., Stanek K., Minaev V., Wiesinger M. and Gloaguen R. (2013)., The giant Shakhdara migmatitic gneiss dome, Pamir, India‐Asia collision zone: 1. Geometry and kinematics., Tectonics, 32(4), 948-979. doi:10.1002/tect.20057.
  18. Verma R.K. and Sekhar C.C. (1985)., Seismotectonics and focal mechanisms of earthquakes from Pamir-Hindukush regions., Tectonophysics, 112(1-4), 297-324. doi:http://dx.doi.org/10.1016/0040-1951(85)90184-2.
  19. Bershaw J., Garzione C.N., Schoenbohm L., Gehrels G. and Tao L. (2012)., Cenozoic evolution of the Pamir plateau based on stratigraphy, zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (west China)., Journal of Asian Earth Sciences, 44, 136-148. doi:http://dx.doi.org/10.1016/j.jseaes.2011.04.020.
  20. Schwab M., Ratschbacher L., Siebel W., McWilliams M., Minaev V., Lutkov V. and Wooden J.L. (2004)., Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet., Tectonics, 23(4). doi:Artn Tc4002: 10.1029/2003tc001583.
  21. Waldhör M., Appel E., Frisch W. and Patzelt A. (2001)., Palaeomagnetic investigation in the Pamirs and its tectonic implications., Journal of Asian Earth Sciences, 19(4), 429-451. doi:Doi 10.1016/S1367-9120(00)00030-4.
  22. Schurr B., Ratschbacher L., Sippl C., Gloaguen R., Yuan X. and Mechie J. (2014)., Seismotectonics of the Pamir., Tectonics, 33(8), 1501-1518. doi:10.1002/2014tc003576.
  23. Schoenecker S.C., Russo R.M. and Silver P.G. (1997)., Source-side splitting of S waves from Hindu Kush-Pamir earthquakes., Tectonophysics, 279(1-4), 149-159. doi:http://dx.doi.org/10.1016/S0040-1951(97)00130-3.
  24. Cao K., Wang G.C., van der Beek P., Bernet M. and Zhang K.X. (2013)., Cenozoic thermo-tectonic evolution of the northeastern Pamir revealed by zircon and apatite fission-track thermochronology., Tectonophysics, 589, 17-32. doi:http://dx.doi.org/10.1016/j.tecto.2012.12.038.
  25. Sobel E.R., Schoenbohm L.M., Chen J., Thiede R., Stockli D.F., Sudo M. and Strecker M.R. (2011)., Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis., Earth and Planetary Science Letters, 304(3-4), 369-378. doi:http://dx.doi.org/10.1016/j.epsl.2011.02.012.
  26. Sobel E.R., Chen J., Schoenbohm L.M., Thiede R., Stockli D.F., Sudo M. and Strecker M.R. (2013)., Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen., Earth and Planetary Science Letters, 363, 204-218. doi:http://dx.doi.org/10.1016/j.epsl.2012.12.009.
  27. Schmidt J., Hacker B.R., Ratschbacher L., Stübner K., Stearns M., Kylander-Clark A. and Minaev V. (2011)., Cenozoic deep crust in the Pamir., Earth and Planetary Science Letters, 312(3-4), 411-421. doi:http://dx.doi.org/10.1016/j.epsl.2011.10.034.
  28. Khurshid A., Yielding G., Ahmad S., Davison I., Jackson J.A., King G.C.P. and Zuo L.B. (1984)., The seismicity of northernmost Pakistan., Tectonophysics, 109(3-4), 209-226. doi:Doi 10.1016/0040-1951(84) 90141-0 .
  29. Hubbard M.S., Grew E.S., Hodges K.V., Yates M.G. and Pertsev N.N. (1999)., Neogene cooling and exhumation of upper-amphibolite-facieswhiteschists, Tectonophysics, 305(1-3), 325-337. doi:Doi 10.1016/S0040-1951(99)00012-8.
  30. Schoenbohm L.M., Chen J., Stutz J., Sobel E.R., Thiede R.C., Kirby B. and Strecker M.R. (2014)., Glacial morphology in the Chinese Pamir: Connections among climate, erosion, topography, lithology and exhumation., Geomorphology, 221, 1-17. doi:10.1016/j.geomorph.2014.05.023.
  31. Furuya M. and Yasuda T. (2011)., The 2008 Yutian normal faulting earthquake (Mw 7.1), NW Tibet: Non-planar fault modeling and implications for the Karakax Fault., Tectonophysics, 511(3-4), 125-133. doi:10.1016/j.tecto.2011.09.003.
  32. Li H., Van der Woerd J., Sun Z., Si J., Tapponnier P., Pan J. and Chevalier M.L. (2012)., Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault in western Tibet., Gondwana Research, 21(1), 64-87. doi:10.1016/j.gr.2011.07.025.
  33. Lin A., Kano K.I., Guo J. and Maruyama T. (2008)., Late Quaternary activity and dextral strike-slip movement on the Karakax Fault Zone, northwest Tibet., Tectonophysics, 453(1-4), 44-62. doi:http://dx.doi.org/10.1016/ j.tecto.2007.04.013.
  34. Khan N.G., Bai L., Zhao J., Li G., Rahman M.M., Cheng C. and Yang J. (2017)., Crustal structure beneath Tien Shan orogenic belt and its adjacent regions from multi-scale seismic data., Science China Earth Sciences, 60(10), 1769-1782.
  35. Robinson A.C., Yin A. and Lovera O.M. (2010)., The role of footwall deformation and denudation in controlling cooling age patterns of detachment systems: An application to the Kongur Shan extensional system in the Eastern Pamir, China., Tectonophysics, 496(1-4), 28-43. doi:http://dx.doi.org/10.1016/j.tecto.2010.10.003 (2010).
  36. Cao K., Bernet M., Wang G.C., van der Beek P., Wang A., Zhang K.X. and Enkelmann E. (2013)., Focused Pliocene-Quaternary exhumation of the Eastern Pamir domes, western China., Earth and Planetary Science Letters, 363, 16-26. doi:http://dx.doi.org/10.1016/j.epsl.2012.12.023 (2013).