International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Chronic Exposure of Female rats to a Low Dose POPs Mixture Induced Oxidative stress in Brain cytosol and mitochondria

Author Affiliations

  • 1Laboratory of Molecular and cell Biology, University of Jijel, PB 98, Ouled Aissa 1800 Jijel, ALGERIA
  • 2 Laboratory of Toxicology and Environmental Health, UR11ES70, University of Sfax, Sfax, TUNISIA
  • 3 Applied Biology Department, SESNV Faculty, Larbi Tebessi University, Tebessa, ALGERIA
  • 4 Department of Animal Biology, University of Mentouri 1, ALGERIA
  • 5 Laboratory of food Neurotoxicology and Bioactivity, University of Metz, FRANCE

Int. Res. J. Earth Sci., Volume 3, Issue (12), Pages 1-8, December,25 (2015)

Abstract

Persistent organic pollutants (POPs) are long-lived toxic organic compounds and are of major threat for human and ecosystem health. Recently, great concerns are raised about POPs mixtures and its potential toxicity even in doses of daily human exposure. Taking in consideration that current scientific consensus states that deficits in energetic metabolism and oxidative stress are common characteristics between neurodegenerative diseases and a large range of POPs is incriminated in the pathogenesis of these diseases, it would be quite interesting to study the effects of exposure to these mixtures on brain. For that an orally chronic exposure to a representative mixture of POPs composed of endosulfan (2.6µg), Chlorpyrifos (5.2µg), Naphthalene (0.023µg) and Benzopyrane (0.002µg)/kg, or the same mixture folded by 10 or 100 was tested on oxidative stress state in different brain regions of adult female rats. Exposed rats have shown an increase in malondialdehyde (MDA) and an alteration in glutathione (GSH) homeostasis in both mitochondrial and regional cytosolic fractions. These effects were accompanied by a decrease in levels of cytosolic Glutathione S-Transferase (GST) and a very significant increase in levels of Superoxide Dismutase (SOD) and Catalase (CAT) in both cytosolic and mitochondrial fractions. The current study suggests that environmental exposure to low doses of POPs mixtures through diet induces oxidative stress in brain where mitochondria could be a privileged target. More studies are required to understand more responses patterns of brain to chronic exposure to POPs mixtures and its implication in neurodegenerative diseases' aetiology.

References

  1. Murray C.J.L., Vos T., Lozano R., Naghavi M. and Flaxman A.D., et al. Disabilityadjustedlife years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010, Lancet 2012380, 2197–2223 (2012)
  2. Vos T., Flaxman A.D., Naghavi M., Lozano R. and Michaud C., et al. Years livedwith disability (YLDs) for 1160 sequalae of 289 diseases and injuries 1990–2010: a ystematic analysis for the Global Burden of Disease Study 2010, Lancet 2012, 380, 2163–96 (2012)
  3. EIA .U.S. Energy Information Administration. International energy outlook. http: //www.eia.gov/forcasts/ieo/, (2013)
  4. Colborn T., Dumanoski D. and Myers J.P., Our stolen future. Penguin Books, New York, (1997)
  5. Perera F.P., Li Z., Whyatt R., Hoepner L., Wang S., Camann D. and Rauh V., Prenatal Airborne PolycyclicAromatic Hydrocarbon Exposure and Child IQ at Age 5 Years, Pediatrics, 124(2), 195–202 (2009)
  6. Perera F., Viswanathan S., Whyatt R., Tang D., Miller R.L. and Rauh V., Children's environmentalhealth research—highlights from the Columbia center for children's environmental health, Ann N Y Acad Sci., 1076,15–28 (2006)
  7. Fleming L., Mann J.B., Bean J., Briggle T. and Sanchez-Ramos J.R., Parkinson’s diseaseand brain levels of Organochlorine pesticides, Ann Neurol., 36, 100-103 (1994)
  8. Moretto A. and Colosio C., Biochemical and toxicological evidence of neurological effects of pesticides: The example of Parkinson’s disease, Neurotoxicology,32, 383–391(2011)
  9. Silva H. and Beauvais L., Human health risk assessment of endosulfan. I: Toxicology and hazard identification. Regulatory Toxicology and Pharmacology, 56, 4–17 (2009)
  10. Kobayashi H. , Yayuma A. and Chiba K.I., Cholinergic system of brain tissue in rats poisoned with the organophosphate -dimethyl -(2,2-dichlorovinyl) phosphate, Toxicol Appl Pharmacol., 82, 32–39 (1986)
  11. Karanth S., Liu J., Mirajkar N. and Pope C., Effects of acute chlorpyrifos exposure on in vivo acetylcholine accumulation in rat striatum, Toxicol Appl Pharmacol., 216, 150–156 (2006)
  12. Aldridge JE, Meyer A, Seidler FJ and Slotkin TA., Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure, Environmental Health Perspectives, 113, 1027–1031 (2005)
  13. Paul V., Balasubramaniam E. and Kazi M., The neurobehavioural toxicity of endosulfan in rats: a serotonergic involvement in learning impairment, Eur J Pharmacol., 3(1), 1-7 (1994)
  14. Saunders C.R., Das S.K., Ramesh A., Shockley D.C. and Mukherjee S., Benzo(a)pyrene-induced acute neurotoxicity in the F-344 rat: role of oxidative stress, J. Appl. Toxicol., 26, 427–438 (2006)
  15. Briz V., Molina-Molina J.M., Sanchez-Redondo S., Fernandez M.F., Grimalt, J.O.,Olea N., Rodriguez-Farre E. and Sunol C., Differential estrogenic effects ofthe persistent organochlorine pesticides dieldrin, endosulfan, and lindane in primary neuronal cultures, Toxicol. Sci, 120,413–427 (2011)
  16. Prasada R.S.K., Cristina O., Joyce E.R., Ram R. and Oscar A., Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus, Toxicology and Applied Pharmacology, 256, 290–299 (2011)
  17. Urdinguio R.G., Sanchez-Mut J.V. and Esteller M., Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies, The Lancet Nuerology, 8, 11,1056–1072 (2009)
  18. Meijer M., Timo H. and Remco H.S., Westerink Acute disturbance of calcium homeostasis in PC12 cells as a novel mechanism of action for (sub)micromolar concentrations of organophosphate insecticides, Neuro Toxicology, Article in press (2014)
  19. Heusinkveld HJ, Molendijk J, van den Berg M and Westerink RHS, Azole fungicides disturb intracellular Ca2+ in an additive manner in dopaminergic PC12 cells. Toxicological Sciences, 134, 374–81 (2012)
  20. Hargreaves A. J. Neurodegenerations induced by organophosphorous compound, Adv Exp Med Biol., 724,189-204 (2012)
  21. Kanthasamy A.G, Kitazawa M., Kanthasamy A. and Anantharam V., Dieldrin-induced neurotoxicity relevance to Parkinson’sdisease pathogenesis, Neurotoxicology, 26,701-719 (2005)
  22. Hatcher J. M., Richardson J. R., Guillot T. S, Mccormack A.L. and Dimonte D.A., Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system, Exp Neurol., 204, 619-630 (2004)
  23. Halliwell B., Oxidative stress and neurodegeneration: where are we now?, Journal of Neurochemistry, 97(6),1634–1658 (2006)
  24. Wisternik R., Modulation of cell viability, oxidative stress, calcium homeostasis, and voltage- and ligand-gated ion channels as common mechanisms of action of (mixtures of) non-dioxin-like polychlorinated biphenyls and polybrominated diphenyl ethers, Environ Sci Pollut Res Int., 10, 6373-83 (2014)
  25. Uttara B., Singh A.V., Zamboni P. and Mahajan R.T., Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options, Curr Neuropharmacol.,7(1), 65–74 (2009)
  26. Federico A., Cardaioli E., Da Pozzo P., Formichi P., Gallus GN and Radi E., Mitochondria, oxidative stress and neurodegeneration, J. Neurol. Sci.,322, 254-262 (2012)
  27. Zeliger HI.,Human Toxicology of Chemical Mixtures Toxic Consequences Beyond the Impact of One-Component Product and Environmental Exposures, Second Edition Harold I. AMSTERDAM, (2011)
  28. Guillemette C., Bouillaud-Kremarik P., Sikhayeva N., Rychen G., Soulimani R. and Schroeder H., Late effects of a perinatal exposure to a 16 PAH mixture: Increase ofanxiety-related behaviours and decrease of regional brain metabolism in adult male rats, Toxicology Letters., 211,105– 113 (2012)
  29. Santokh J.,Wayne J.B., Jamie S.N. and Yagminas A. al., Effects of Environmentally Relevant Mixtures of Persistent Organic Pollutants on the Developmental Neurobiology in Rats. Toxicologic Pathology, 41, 38-47 (2013)
  30. Arpiné Ardzivian E., Diesel D., Desor F., Feidt C., Bouayed J., Kiemer A.K. and Soulimani R., Neurodevelopmental and behavioral toxicity via lactational exposure to the sum of six indicator non-dioxin-like-polychlorinated biphenyls (6 NDL-PCBs) in mice. Toxicology, 299, 44–54 (2012)
  31. Garman R.H., Fix A.S., Jortne, B.S., Jensen K.F., Hardisty J.F., Claudio L. and Ferenc S., Methods to identify and characterize developmental neurotoxicity for human health risk assessment. II: Neuropathology, Environ Health Perspect, 109, 93–100 (2001)
  32. Tilson H.A., Neurotoxicology risk assessment guidelines: Developmental neurotoxicology, Neurotoxicology, 21,189–94 (2000)
  33. Moser V.C., Padilla S., Simmons J.E., Haber L.T. and Hertzberg R.C., Impact of Chemical Proportions on the Acute Neurotoxicity of a Mixture of Seven Carbamates in Preweanling and Adult Rats, Toxicological sciences, 129(1), 126–134 (2012)
  34. Moser V.C., Casey M., Hamm A., Carter W.H., Jr Simmons J. E. and GenningsC., Neurotoxicological and statistical analyses of a mixture of five organophosphorus pesticides using a ray design, Toxicol. Sci., 86, 101–115 (2005)
  35. Roszczenko A., Rogalska J., Moniuszko-Jakoniuk J. and Brzóska M.M., The effect of exposure to chlorfenvinphos on lipid metabolism and apoptotic and necrotic cells death in the brain of rats, Exp Toxicol Pathol., 65(5), 531-9 (2013)
  36. Ojo J.O., Abdullah L., Evans J., Reed J.M., Montague H., Mullan M.J. and Crawford F.C., Exposure to an organophosphate pesticide, individually or in combination with other Gulf War agents, impairs synaptic integrity and neuronal differentiation, and is accompanied by subtle microvascular injury in a mouse model of Gulf War agent exposure, Neuropathology, 34(2), 109-27 (2014)
  37. Du G., Lewis M.M., Sterling N.W., Kong L., Chen H., Mailman R.B. and Huang X., Microstructural changes in the substantia nigra of asymptomatic agricultural workers, Neurotoxicol Teratol., 41, 60-4 (2014)
  38. Swerdlow R.H., The neurodegenerative mitochondriopathies, J. Alzheimers Dis, 17, 737–51 (2009)
  39. Manczak M., Anekonda T.S., Henson E., Park B.S., Quinn J. and Reddy P.H., Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression, Hum Mol Genet., 15, 1437–49 (2006)
  40. ATSDR (Agency for Toxic Substances and Disease Register). Toxicological Profile for Endosulfan, September 2000.Available at: http://www.atsdr.cdc.gov/toxprofiles/tp41.pdf. Stokholm convention (2011)
  41. Giesy J. and Solomon K., Ecological Risk Assessment for Chlorpyrifos in Terrestrial and Aquatic Systems in the United States XVI, 269, 40 illus (2014)
  42. Iñigo-Nuñez S., Herreros M.A., Encinas T.and Gonzales-Bulnes A., Estimated daily intake of pesticides andxenoestrogenic exposure by fruit consumption in the female population from a Mediterranean country (Spain), Food Control, 21, 417-477 (2010)
  43. Martorell I., PerellóG., Martí-Cid R., CastellV., Llobet J.M. and DomingoJ.L., Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend, Environment International, 36, 424–432 (2010)
  44. Llobet J. M., Martí-Cid R., Castell V. and Domingo J. L., Significant decreasing trend in human dietary exposure to PCDD/PCDFs and PCBs in Catalonia, Spain, Toxicology Letters, 178, 117–126 (2008)
  45. Clayton D.A. and J.N. Doda, Isolation of mitochondria from cells and tissues. in Cells: A Laboratory Manual. D. L. Spector, R. Goldman, and L., Leinwand, ed.Sci. Press, Beijing, China., 356–361 (2001)
  46. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal Biochem.,72,248–54 (1976)
  47. Beauchamp C. and Fridovich I., Assay of superoxide dismutase. Anal Biochem., 44, 276–87 (1971)
  48. Aebi H. Catalase in vitro. Methods Enzymol. 105, 121–126.Ames, B.N., Shigenaga, M.K., Hagen, T.M., Mitochondrial decay in aging, Biochim. Biophys. Acta , 1271, 165–170 (1995)
  49. Habig W.H., Pabst M.J. and Jakoby W.B., Glutathione S-transferases.The first enzymatic step in mercapturic acid formation. J.Biol.Chem., 249, 7130-7139 (1974)
  50. Ellman G., Tissu sulfhydryl groups, Archbioclom biophis., 82, 70-77 (1959)
  51. Okhawa H., Ohishi N. and Yagi K., Assay of lipid peroxides in animal tissue by thiobarbituric reaction, Anal biochem., 95, 351-8 (1979)
  52. Ojha A., Yaduvanshi S. K., Pant S.C., Lomash V. and Srivasta N., Evaluation of DNA damage and cytotoxicity induced by three commonly used organophosphate pesticides individually and in mixture, in rat tissues, Environ Toxicol., 45, 233-277 (2011)
  53. Bouayed J, Rammal H, Soulimani R. Oxidative stress and anxiety: relationship and cellular pathways, Oxid Med Cell Longev., 2, 63–7 (2009)
  54. Rammal H, Bouayed J andSoulimani R., A direct relationship between aggressive behavior in the resident/intruder test and cell oxidative status in adult male mice, Eur J Pharmacol., 627, 1736 (2010)
  55. Kodavanti P.R.S., Neurotoxicity of persistent organic pollutants: possiblemode(s) of action and further considerations, Dose-Response, 3, 273–305 (2005)
  56. Kaur P., Radotra B., Minz R.W. and Gill K.D., Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain, Neurotoxicology, 28, 1208–1219 (2007)
  57. Ben Amara I., Soudani N., Hakim A., Troudi A., Zeghal K., Boudawara T. Selenium and vitamine E, natural antioxidants, protect rat cerebral cortex against dismethoate-induced neurotoxicity, Pesticide Biochemistry and Physiology, 101, 165-174 (2001)
  58. Cicchetti F., Drouinouellet J. and Gross R.E., Environmental toxins and Parkinson’sdisease, Trends Pharmacol Sci., 30, 475-483 (2001)
  59. Trevisan R., Silva M.I. and Pandolfo P. et al. Antioxidant and acetylcholinesterase response to repeated malathion exposure in rat cerebral cortex and hippocampus, Basic Clin Pharmacol Toxicol, 102(4), 365-9 (2008)
  60. Brocardo P.S., Pandolfo P., Takahashi RN., Rodrigues ALS. and Dafre AL, Antioxidant defenses and lipid peroxidation in the cerebral cortex and hippocampus following acute exposure to malathion and/or zinc chloride. Toxicology, 207, 283–91 (2005)
  61. Fortunato J.J., Feier G., Vitali A.M., Petronilho F.C., Dal-Pizzol F. andQuevedo J.Malathion-induced oxidative stress in rat brain regions, Neurochem Res., 316718 (2006)
  62. Di Monte D.A., Chan P. and Sandy M.S., Glutathione in Parkinson’s disease: a link between oxidative stress and mitochondrial damage? , Ann Neurol., 32(S1) S111-S115 (1992)
  63. Sechi G., Deledda M. G., Bua G., Satta W.M., Deiana G.A., Pes G.M. and Rosati G., Reduced intravenous glutathione in the treatment of early Parkinson 's disease. Prog Neuropsychopharmacol Biol Psychiatry, 20(7), 1159-70 (1996)
  64. Franco R., Sanchez-Olea R., Reyes-Reyes E.M. and Panayiotidis M.I., Environmental toxicity, oxidative stress and apoptosis: Menage a Trois, Mutat. Res., 674, 3–22 (2009)
  65. Bellésa M., Alonsoa V., Linaresa, V., Maria L., Albinaa B. and Juan J., Behavioral effects and oxidative status in brain regions of adult rats exposed to BDE-99, Toxicology Letters, 194, 1–7 (2010)
  66. Venkataraman P., Selvakumar K., Krishnamoorthy G., Muthusami S., Rameshkumar R., Prakash S. and Arunakaran J., Effect of melatonin on PCB (Aroclor 1254) induced neuronal damage and changes in Cu/Zn superoxide dismutase and glutathione peroxidase-4 mRNA expression in cerebral cortex, cerebellum and hippocampus of adult rats, Neurosci Res., 66(2), 189-97 (2010)
  67. Duk-Hee L. and David R.J., Hormesis and public health: can glutathione depletion and mitochondrial dysfunction due to very low-dose chronic exposure to persistent organic pollutants be mitigated?J Epidemiol Community Health, 69(3), (1-7) (2014)
  68. Monk T.J. and LAU S.S., The pharmacology and toxicology of polephenolic glutathione-conjugates, Annu.Rev. pharmacol. Toxicol., 38, 229-255 (1998)
  69. Monk T.J.et al., The role of glutathione in neuroprotection and neurotoxicity. Toxicological sciences,51, 161-177 (1999)
  70. Casetta I., Govoni V. and Granieri E., Oxidative stress, antioxidants and neurodegenerative diseases, Curr Pharm.,11, 52-2033 (2005)
  71. Massicotte C., Knight K., Vander Schyf C.J., Jortner B.S. and Ehrich M., Effects of organophosphorus compounds on ATP production mitochondrial integrity in cultured cells, Neurotoxicol, Res., 7, 203–217 (2005)
  72. Kale M., Rathore N., John S. and Bhatnagar D., Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species, Toxicol. Lett.,105, 197–205 (1999)
  73. Rezvanfar M.A., Rezvanfar M.A,. Ranjbar A., Baeeri M., Azadeh M. and Abdollahi M., Biochemical evidence on positive effects of rolipram a phosphodiesterase-4 inhibitor in malathion-induced toxic stress in rat blood and brain mitochondria, Pesticide Biochemistry and Physiology, 98, 135–143(2010)
  74. Anupama O., Santosh K. and Yaduvanshi N., Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues, Pesticide Biochemistry and Physiology, 99,148–156 (2011)
  75. Lukaszewicz-Hussain A., Subchronic intoxication with chlorfenvinphos, an organophosphate insecticide, affects rat brain antioxidative enzymes and glutathione level, Food Chem Toxicol., 46(1), 82-6 (2008)
  76. Kebieche M., Lakroun Z1., Lahouel A., Zaama D., Rouabhi R. and Fetoui H., Kebieche M., Lakroun Z1., Lahouel A. and Zaama D., Rouabhi R. and Fetoui H., Preventive Role of quercetin against Non-enzymatic Peroxidation and Oxidative stressin Brain Mitochondria induced by Endosulfan in Rat, International Research Journal of Earth Sciences,3(1), 1-8 (2015)
  77. Daniele C., Pereira T. and Serrano L., Effect of mixture of diazinon and benzo[a]pyrene in glutathion S-transferase of Nile tilapia., O Mundo da Saúde, 38(1), 9-15 (2014)