7th International Science Congress (ISC-2017).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

The roles of root border cells in plant growth and development: a review

Author Affiliations

  • 1Department of Crop Science, Faculty of Agriculture, Eastern University Sri Lanka, Chenkalady, Sri Lanka

Res. J. Agriculture & Forestry Sci., Volume 5, Issue (4), Pages 23-28, April,8 (2017)

Abstract

Competency of root tips to grasp and move towards water and nutrients in the soil is the major factor influence on the sustainable survival and development of plants. Enormous population of separated somatic cells which known as Root border cells. Root tips are the part which covered by these Root border cells and those are play a major part in plant health. These Root border cells can active for few days after detachment from the root cap in the rhizosphere. Amount of border cells being detached from the root tip is depend on the species of plant. Further Root border cells are thought to play a key role in root defense and plant growth. The detached active cells may share many functions including physical, chemical and biological activities. Numerous discoveries showed the benefits of root border cells in growth and development of plant. Therefore, greater discharges of border cell production may have the possible to stimulate plant growth and development to the highest degree, and to contribute a selective advantage in certain soil atmospheres. While border cells may offer an appropriate mechanism for compound distribution to soil, further deep-seated research works are necessary to characterize the metabolic and proteomic expression arrays in comparison to other root cells to grasp and capitalize on their unique attributes at species level.

References

  1. Hawes M.C. and Brigham L.A. (1992)., Impact of root border cells on microbial populations in the rhizosphere., Adv. Plant Pathol., 8, 119-148.
  2. Hawes M.C., Gunawardena U., Miyasaka S. and Zhao X. (2000)., The role of root border cells in plant defense., Trends Plant Sci, 5(3), 128-133.
  3. Somasundaram S., Fukuzono S. and Iijima M. (2008)., Dynamics of root border cells in rhizosphere of Zea mays L.: Crushed cells during root penetration, survival in soil and long term soil compaction effect., Plant Prod. Sci, 11(4), 440-446.
  4. Iijima M., Griffiths B. and Bengough A.G. (2000)., Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand., New Phytol., 145(3), 477-482.
  5. Somasundaram S., Bonkowski M. and Iijima M. (2008)., Functional role of mucilage–border cells: A complex facilitating protozoan effects on plant growth., Plant Prod. Sci, 11(3), 344-351.
  6. Somasundaram S., Rao T.P., Tatsumi J. and Iijima M. (2009)., Rhizodeposition of mucilage, root border cells, carbon and water under combined soil physical stresses in Zea mays L., Plant Prod. Sci., 12(4), 443-448.
  7. Zhao X., Misaghi I.J. and Hawes M.C. (2000)., Stimulation of border cell production in response to increased Carbon dioxide levels., Plant Physiol, 122(1), 181-188.
  8. Hawes M.C., Brigham L.A., Wen F., Woo H.H. and Zho Y. (1998)., Function of root border cells in plant health: Pioneers in the rhizosphere., Annual Rev. Phytopathol., 36(1), 311-327.
  9. Hawes M.C. and Pueppke S.G. (1986)., Sloughed peripheral root cap cells: Yield from different plants, and callus formation from single cells., Am. J. Bot., 73(10), 1466-1473.
  10. Vermeer J. and McCully M.E. (1982)., The rhizosphere in Zea: new insight into its structure and development., Planta, 156(1), 45-61.
  11. Hawes M.C., Bengough G., Cassab G. and Ponce G. (2002)., Root caps and rhizosphere., J. Plant Growth Regul., 21(4), 352-367.
  12. Guinel F.C. and McCully M.E. (1987)., The cells shed by the root cap of Zea: their origin and some structural and physiological properties., Plant, Cell and Environ., 10(7), 565-578.
  13. Knudson L. (1919)., Viability of detached root cap cells., Am. J. Bot., 6(7), 309-310.
  14. Hawes M.C., Brigham L.A., Woo H.H., Zhu Y. and Wen F. (1996)., Root border cells., Biology of plant–microbe interactions, 509-514.
  15. Pan J.W., Zhu M.Y., Peng H.Z. and Wang L.L. (2002)., Developmental regulation and biological functions of root border cells in higher plants., Acta Bot. Sin., 44(1), 1-8.
  16. Brigham L.A., Woo H.H., Nicoll S.M. and Hawes M.C. (1995)., Differential expression of proteins and mRNAs from border cells and root tips of pea., Plant physiol., 109(2), 457-463.
  17. Brigham L.A., Nicoll S.M. and Hawes M.C. (1993)., Isolation of cell-specific DNAs from a pea root border cell library., Plant Physiol, 102(1), 151.
  18. Hawes MC. and Lin H.J. (1990)., Correlation of pectolytic enzyme activity with the programmed release of cells from root caps of pea., Plant Physiol., 94(4), 1855-1859.
  19. Iijima M., Higuchi T., Barlow P.W. and Bengough A.G. (2003)., Root cap removal increases root penetration resistance in maize (Zea mays L.)., J. Experi. Bot., 54(390), 2105-2109.
  20. Ponce G., Barlow P.W., Feldman L.J. and Cassab G.I. (2005)., Auxin and ethylene interactions control mitotic activity of the quiescent centre, root cap size, and pattern of cap cell differentiation in maize., Plant Cell and Environ., 28(6), 719-732.
  21. Stephenson M.B. and Hawes M.C. (1994)., Correlation of pectin methylesterase activity in root caps of pea with border cell separation., Plant Physiol, 106(2), 739-745.
  22. Wen F., Zhu Y. and Hawes M.C. (1999)., Effect of pectin methyl esterase gene expression on pea root development., Plant Cell, 11(6), 1129-1140.
  23. Groot E.P., Doyle J.A., Nichol S.A. and Rost T.L. (2004)., Phylogenetic distribution and evolution of root apical meristem organization in dicotyledonous angiosperms., Inter. J. Plant Sci., 165(1), 97-105.
  24. Hamamoto L., Hawes M.C. and Rost T.L. (2006)., The production and release of living root cap border cells is a function of root apical meristem type in dicotyledonous angiosperm plants., Annals of Bot., 97(5), 917-923.
  25. Vicré M., Santaella C., Blanchet S., Gateau A. and Driouich A. (2005)., Root border-like cells of Arabidopsis, microscopical characterization and role in the interaction with rhizobacteria., Plant Physiol, 138(2), 998-1008.
  26. Iijima M., Higuchi T., Watanabe A. and Bengough A.G. (2004)., Method to quantify root border cells in sandy soil., Soil Biol. & Biochem., 36(9), 1517-1519.
  27. Hawes M.C., Gunawardena U., Miyasaka S. and Zhao X. (2000)., The role of root border cells in plant defense., Trends Plant Sci, 5(3), 128-133.
  28. Rougier M. (1981)., Secretory activity at the root cap., in Encyclopedia of Plant Physiology, New Series, eds Tanner W, Loews FA (Springer Verlag, Berlin), 13B, Plant Carbohydrates II, 542-574.
  29. Bengough A.G. and McKenzie B.M. (1997)., Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L.) root growth., J. Exp Bot, 48(4), 885-893.
  30. Barlow P. (1974)., Regeneration of the cap of primary roots of Zea mays., New Phytol., 73(5), 937-954.
  31. Boeuf-Tremblay V., Planturcux S. and Guckert A. (1995)., Influence of mechanical impedance on root exudation of maize seedlings at two development stages., Plant and Soil, 172(2), 279-287.
  32. Iijima M. and Kono Y. (1992)., Development of Golgi apparatus in the root cap cells of maize (Zea mays L.) as affected by compacted soil., Annals of Bot., 70(3), 207-212.
  33. Bengough A.G., Iijima M. and Barlow P. (2001)., Image analysis of maize root caps Ðestimating cell numbers from 2-D longitudinal sections., Annals of Bot., 87(5), 693-698.
  34. Bonkowski M. and Brandt F. (2002)., Do soil protozoa enhance plant growth by hormonal effects?., Soil Biol. & Bio Chem., 34(11), 1709-1715.
  35. Hirsch A.M., Bauer W.D., Cullimore J., Tyler B., Yoder J.I. and Bird D.M. (2003)., Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms., Ecol., 84(4), 858-868.
  36. Gunawardena U. and Hawes M.C. (2002)., Role of border cells in localized root infection by pathogenic fungi., Mol Plant Microbe Interact., 15, 1128-1136.
  37. Gunawardena U., Rodriguez M., Straney D., Romeo J.T., VanEtten H.D. and Hawes M.C. (2005)., Tissue-specific localization of pea root infection by Nectria haematococca: mechanisms and consequences., Plant Physiol., 137(4), 1363-1374.
  38. Wen F., VanEtten H., Tsaiprailis G. and Hawes M.C. (2007)., Extracellular proteins in Pisum sativum L. root tip and border cell exudates., Plant Physiol., 143(2), 773-783.
  39. Sherwood R. (1987)., Papilla formation in corn root cap cells and leaves inoculated with Colletotrichum graminicola., Phytopathol., 77(6), 930-934.
  40. Cannesan M.A., Gangneux C., Lanoue A., Giron D., Laval K., Hawes M.C., Driouich A. and Vicre M. (2011)., Association between border cell responses and localized root infection by pathogenic Aphanomyces euteiches., Annals of Bot., 108(3), 459-469.
  41. Cliffe L.J., Humphreys N.E., Lane T.E., Potten C.S., Booth C. and Grencis R.K. (2005)., Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion., Science, 308(5727), 1463-1465.
  42. Goldberg N.P., Hawes M.C. and Stanghellini M.E. (1989)., Specific attraction to and infection of cotton root cap cells by zoospores of Pythium dissotocum., Can. J. Bot, 67(6), 1760-1767.
  43. De la Peña C., Lei Z., Watson B.S., Summer L.W. and Vivanco J.M. (2008)., Root-microbe communication through protein secretion., J. Biol. Chem., 283(37), 25247-25255.
  44. Young I.M., Griffiths B.S., Robertson W.M. and McNicol J.W. (1998)., Nematode (Caenorhabditis elegans) movement in sand as affected by particle size, moisture and the presence of bacteria (Escherichia coli)., Europe. J. Soil Sci., 49(2), 237-241.
  45. Rodger S., Bengough AG., Griffiths BS., Stubbs V. and Young IM. (2003)., Does the presence of detached root border cells of Zea mays alter the activity of the pathogenic nematode Meloidogyne incognita?., Phytopathol., 93(9), 1111-1114.
  46. Hawes M.C., Curlango-Rivera G., Wen F., White G.J., Van Etten H.D. and Xiong Z. (2011)., Extracelluar DNA: the tip of root defenses., Plant Sci., 180(6), 741-745.
  47. Wen F., White G.J., VanEtten H.D., Xiong Z. and Hawes M.C. (2009)., Extracellular DNA Is Required for Root Tip Resistance to Fungal Infection., Plant Physiol., 151(2), 820-829.
  48. Ryan P.R., DiTomaso J.M. and Kochian L.V. (1993)., Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap., J. Experi.l Bot., 44(2), 437-446.
  49. Driouich A., Durand C. and Vicré-Gibouin M. (2007)., Formation and separation of root border cells., Trends Plant Sci., 12(1), 14-19.
  50. Fiskesjo G. (1990)., Occurrence and degeneration of “Al-structures” in root cap cells of Allium cepa L. after Al treatment., Hereditas, 112(3), 193-202.
  51. Miyasaka S.C. and Hawes M.C. (2001)., Possible Role of Root Border Cells in Detection and Avoidance of Aluminum Toxicity., Plant Physiol., 125(4), 1978-1987.
  52. Horst W.J., Wagner A. and Marschner H. (1982)., Mucilage protects root meristems from aluminum injury., Z Pflanzenphysiol Bd, 105(5), 435-444.
  53. Li. X.F., Ma J.F., Hiradate S. and Matsumoto H. (2000)., Mucilage strongly binds aluminum but does not prevent roots from aluminum injury in Zea mays., Physiol. Plant, 108(2), 152-160.