6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Harnessing Arbuscular Mycorrhizal Fungi (Amf) for Quality Seedling Production

Author Affiliations

  • 1College of Forestry, Kerala Agricultural University, Thrissur, Kerala, INDIA
  • 2College of Forestry, Kerala Agricultural University, Thrissur, Kerala, INDIA
  • 3College of Forestry, Kerala Agricultural University, Thrissur, Kerala, INDIA
  • 4College of Forestry, Kerala Agricultural University, Thrissur, Kerala, INDIA

Res. J. Agriculture & Forestry Sci., Volume 3, Issue (6), Pages 22-40, June,8 (2015)


Arbuscular Mycorrhizal Fungi (AMF), a group of obligate biotrophic fungi belonging to the Phylum Glomeromycota are among the oldest fungi in terrestrial systems on earth. Symbiotic associations of AMF and plant roots are widespread in the natural environment and can provide a range of benefits to the host plant. These include improved nutrition, enhanced resistance to soil-borne pests and disease, improved resistance to drought, tolerance of heavy metals and better soil structure. AMF is an unexploited potential biofertilizer in forest nurseries which can be utilized for quality tree seedling production. In many forest tree seedlings the inoculation of AMF was found beneficial, resulting in seedlings of higher quality. The high percentage of root colonization in AMF treated seedlings is found to be directly correlated with an improved growth and physiology. Presence of AMF significantly increases root surface area by production of extensive hyphae, increase transpiration, reduce leaf temperature and restrain the decomposition of chlorophyll. The AMF host obtains maximum benefit when the mineral nutrient regime is least favourable for growth. Hyphae work as conduits that transport carbon from plant roots to other soil organisms involved in nutrient cycling processes.


  1. Jeffries P., Gianinazzi S., Perotto S., Turnau K. and Barea J.M., The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility, Biology and Fertility of Soils, 37,1-16 (2003)
  2. Cordier C., Pozo M.J., Barea J.M., Gianinazzi S. and Gianinazzi-Pearson S., Cell defence responses associated with localized and systematic resistance to Phytophthora parasitica induced by an arbuscular mycorrhizal fungus, Molecular Plant-Microbe Interactions, 11,1017-1028(1998)
  3. Morin C., Samson J. and Dessureault M., Protection of black spruce seedlings against Cylindrocladium root rot with ectomycorrhizal fungi, Canadium Journal of Botany, 77, 169-174 (1999)
  4. Odebode A.C., Salami A.O. and Osonubi O., Oxidative enzymes activities of mycorrhizal inoculated pepper plant infected with phytophthora infestans, Arch. Phytopath. Pflanz, 33, 473-480 (2001)
  5. Killani, Biological control of root and soil borne fungal pathogens of cowpea (Vigna Unguilata Walp L.) isolated from Northern Guinea Savanna of Nigeria, PhD Thesis, University of Agriculture, Abeokuta, Ogun State, Nigeria, 201-209 (2010)
  6. Simard S.W., Perry D.A., Jones M.D., Myrold D.D., Durall D.M. and Molina R., Net transfer of carbon between ectomycorrhizal tree species in the field, Nature, 388, 579-582 (1997)
  7. Abiala1 M.A., Popoola1 O.O., Olawuyi1 O.J., Oyelude1 J.O., Akanmu1 A.O., Killani A.S., Osonubi O. and Odebode A.C., Harnessing the Potentials of Vesicular Arbuscular Mycorrhizal (VAM) Fungi to Plant Growth: A Review, Int. J. Pure Appl. Sci. Technol., 14(2), 61-79(2013)
  8. Schubler A., Glomeromycota, link Taxonomy, Online: http://schuessler.userweb.mwn.de/amhylo/amphylogeny.html, (2013)
  9. Rosendahl S., Communities, populations and individuals of arbuscular mycorrhizal fungi, New Phytologist, 178(2),253-266 (2008)
  10. Frank A.B., Ueber die auf Wurzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdische Pilze, Ber Dtsch Bot Ges., 3,128–145 (1885)
  11. Nageli C., Pilze im Innern von Zellen, Linnaea, 16, 278–285 (1842)
  12. Kelley A.P., The concept of mycorrhiza, Mycologia, 23, 147–151 (1931)
  13. Kelley A.P., Mycotrophy in plants, Chronica Botanica, Waltham, Mass (1950)
  14. Frank A.B., Ueber neue Mycorrhiza-formen, Ber Dtsch Bot Ges., 5, 395-409 (1887)
  15. Janse J.M., Les endophytes radicaux de quelques plantes Javanaises, Ann Jardin Bot Buitenzorg, 14, 53–201 (1897)
  16. Gallaud J., Etude sur les mycorrhizes endotrophes, Rev Gen Bot., 17, 5–48, 66–83, 123–136, 223–249, 313–325,425–433, 479–500 (1905)
  17. Phillips J.M. and Hayman D.S., Improved procedures for clearing roots and staining parasitic and vesiculararbuscular mycorrhizal mycorrhizal fungi for rapid assessment of infection, Trans Br Mycol Soc., 55, 158-160 (1970)
  18. McGonigle T.P., Miller M.H., Evans D.G., Fairchild G.L. and Swan J.A., A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi, New Phytol., 115, 495–501 (1990)
  19. Nicholls V.O., Studies on the association between certain soil fungi and the roots of some members of the Liliiflorae, PhD dissertation, Department of Botany, University of Bristol (1952)
  20. Mosse B., Fructifications associated with mycorrhizal strawberry roots, Nature 171, 974 (1953)
  21. Nicolson T.H. and Gerdemann J.W., Mycorrhizal Endogone species, Mycologia, 60, 313–325 (1968)
  22. Sanders F.E., Mosse B. and Tinker P.B. (eds), Endomycorrhizas. Proceedings of a symposium held at the University of Leeds, 22–25 July 1974, Academic Press, London (1975)
  23. Dangeard P.A., Une maladie du peuplier dans l’ouest de la France, Botaniste, 58, 38–43 (1896)
  24. Dangeard P.A., Le Rhizophagus populinus, Botaniste, 7, 285–287 (1900)
  25. Gerdemann J.W., Relation of a large soil borne spore to phycomycetous mycorrhizal infections, Mycologia, 47,619–632 (1955)
  26. Gerdemann J.W. and Nicolson T.H., Spores of mycorrhizal Endogones pecies extracted from soil by wet sieving and decanting, Trans Br Mycol Soc., 46, 235–244(1963)
  27. Schubler A., Schwarzott D. and Walker C., A new fungal phylum, the Glomeromycota: phylogeny and evolution, Mycol Res., 105, 1413–1421 (2001)
  28. Rayner M.C., Mycorrhiza, New Phytol., 25,1–50, 65–108, 171-190, 248–263, 338–372, 26, 22–45, 85–114(1926–1927)
  29. Nicolson T.H., Vesicular-arbuscular mycorrhiza auniversal plant symbiosis. Science Progress, Oxford 55, 561–581 (1967)
  30. Gerdemann J.W., Fungi that form the vesicular arbuscular type of endomycorrhiza. In: Hacskaylo, E.(ed), Mycorrhizae, Proceedings of the first north American conference on mycorrhizae, USDA Misc Publ., 1189, 9–18 (1971)
  31. Francis R. and Read D.J., The contributions of mycorrhizal fungi to the determination of plant community structure, In: Robson, A.D., Abbott, L.K. and Malajczuk, N.(eds), Management of mycorrhizas in agriculture, horticulture and forestry, Kluwer, Dor-drecht,(1984)
  32. Mosse B., Plant growth responses to vesicular-arbuscular mycorrhiza, IV, In soil given additional phosphate, New Phytol, 72,127–136 (1973)
  33. Peng S., Eissenstat D.M., Graham J.H., Williams K. and Hodge N.C., Growth depression in mycorrhizal Citrus at high phosphorus supply, Plant Physiol, 101, 1063–1071 (1993)
  34. Modjo H.S. and Hendrix J.W., The mycorrhizal fungus Glomus macro carpum as a cause of tobacco stunt disease, Phytopa theology, 76, 688–691 (1986)
  35. Mosse B., Growth and chemical composition of mycorrhizal and non-mycorrhizal apples, Nature, 179, 922 (1957)
  36. Baylis G.T.S., Effect of vesicular-arbuscular mycorrhizas on growth of Griselinialittoralis (Cornaceae), New Phytol., 58, 274 (1959)
  37. Baylis G.T.S., Root hairs and phycomycetous mycorrhizas in phosphorus deficient soil, Plant Soil, 33, 713–716 (1970)
  38. Baylis G.T.S., Fungi, phosphorus and thee volution of root systems, Search, 3, 257–259 (1972)
  39. Bowen G.D. and Rovira A.D., The influence of micro organisms on growth and metabolism on plant roots, In: Witting ton, W.J.(ed). Root growth, Butterworth, London, 170–199 (1968)
  40. Gilmore A.E., The influence of endotrophic mycorrhizae on the growth of peach seedlings, J. Am. Soc. Hortic. Sci., 96, 35 (1971)
  41. Ross J.P. and Harper J.A., Effect of Endogone mycorrhiza on soybean yields, Phytopathology, 60, 1552–1556 (1970)
  42. Peyronel B., Prime osservazioni sui rapport tra luce e simbiosi micorrizica, Annuar, Lab, Chanousia Giardino Botanico dell’ Ordine Mauizianaal Piccolo San Bernardo, 4, 3–19 (1940)
  43. Peuss H., Untersuchungen zur Ökologie und Bedeutung der Tabakmycorrhiza, Arch Microbio., l29, 112–142 (1958)
  44. Menge J.A., Lembright H. and Johnson E.L.V., Utilization of mycorrhizal fungi in citrus nurseries, Proc Int Soc Citriculture, 1,129–132 (1977)
  45. Berta G., Fusconi A., Trotta A. and Scannerini S., Morphogenetic modifications induced by the mycorrhizal fungus Glomuss train E3 on the root system of Allium porrum L., New Phytol., 114, 207–216 (1990)
  46. Berta G., Tagliasacchi A.M., Fusconi A., Gerlero D., Trotta A. and Scannerini S., The mitotic cycle in root apical meristem of Allium porrum L. is controlled by the endomycorrhizal fungus Glomus sp. Strain E3, Protoplasma, 161, 12–16 (1991)
  47. McArthur D.A.J. and Knowles N.R., Resistance responses of potato to vesicularar buscular mycorrhizal fungi under varying abiotic phosphorus levels, Plant Physiol., 100, 341–351 (1992)
  48. Besmer Y.L. and Koide R.T., Effect of mycorrhizal colonization and phosphorus on ethylene production by snapdragon (Antirrhinum majus L.) flowers, Mycorrhiza, 9, 161–166 (1999)
  49. Warner A., Mosse B. and Dingemann L., The nutrient film technique for inoculums production, In: Molina, R.(ed). Proceedings of the 6th North American conference on Mycorrhizae, Forest Research Laboratory, Oregon State University, Corvallis, Ore., 85–86 (1985)
  50. Hung L.L. and Sylvia D.M., VAM inoculums production in aeroponic culture, In: Sylvia, D.M., Hung, L.L. and Graham, J.H.(eds), Mycorrhizae in the next decade, practical applications and research priorities. Proceedings of the 7th North American conference on mycorrhiza, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla., 272–273 (1987)
  51. Dehne H.W., Backhaus G.F. and Baltruschat H., Inoculation of plants with VA mycorrhizal fungi at inorganic carrier materials, In: Sylvia, D.M., Hung, L.L., Graham, J.H.(eds). Mycorrhizae in the next decade, practical applications and research priorities. Proceedings of the 7th North American conference on mycorrhiza. Institute of Food an Agricultural Sciences, University of Florida, Gainesville, Fla., 272–273 (1987)
  52. Mosse B. and Hayman D.S., Plant growth responses to vesicular arbuscular mycorrhiza, II. In unsterilized field soils, New Phyto., l70, 29–34 (1971)
  53. Mosse B., The influence of soil type and Endogonestrainon the growth of mycorrhizal plants in phosphate deficient soils, Rev Ecol Biol Sol, 9, 529-537 (1972)
  54. Abbott L.K. and Robson A.D., Infectivity and effectiveness of five endomycorrhizal fungi: competition with indigenous fungi in field soils, Australian Journal of Agricultural Research, 32, 621–630 (1981)
  55. Gianinazzi S., Trouvelot A. and Gianinazzi-Pearson V., Role and use of mycorrhizas in horticultural crop production, Adv. Hort. Sci., 4, 25-30 (1990)
  56. Siqueira J.O., Safir G.R. and Nair M.G., Stimulation of vesiculararbuscular mycorrhiza formation and growth of white clover by flavonoid compounds, New Phytol., 118, 87–93 (1991)
  57. Bécard G., Taylor L.P., Douds D.D., Pfeffer P.E. and Doner L.W., Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses, Molecular Plant Microbe Interact, 8,252-258 (1995)
  58. Chabot S., Bécard G., and Piché Y., Life cycle of Glomus intraradix in root organ culture, Mycologia, 84, 315–321 (1992)
  59. Kape R., Wex K., Parniske M., Görge E., Wetzel A. and Werner D., Legume root metabolites and VA mycorrhiza development, J.Plant Physiol. 141, 54–60 (1992)
  60. Elmer W.H., Influence of formononetin and NaCl on mycorrhizal colonization and fusarium crown and root rot of asparagus, Plant Dis, 86,1318-1324 (2002)
  61. Jones F.R., A mycorrhizal fungus in the roots of legumes and some other plants, J. Agric. Res., 29, 459–470 (1924)
  62. Gerdemann J.W. and Trappe J.M., The Endogonaceae in the Pacific Northwest, Mycol Mem., 5,1–76 (1974)
  63. Tulasne L.R. and Tulasne C., Fungi nonnulli hypogaei, novi v. Minus cogniti act, Giorn Bot Ital., 2(1), 35–63(1845)
  64. Gerdemann J.W., and Trappe J.M., Endogone incrassata: a Zygosporic species with hollow sporocarps, Mycologia, 62, 1204-1208 (1970)
  65. Trappe J.M., Synoptic key to the genera and species of zygomycetous mycorrhizal fungi, Phytopathol., 72, 1102–1108 (1982)
  66. Schenck N.C. and Pérez Y., Manual for the identification of VA mycorrhizal fungi, University of Florida, Gainesville, 2nd edition, (1988)
  67. Hall I.R. and Fish B.J., A key to the Endogonaceae, Trans Br Mycol Soc., 73, 261–270 (1979)
  68. Hall I.R., Taxonomy of VA mycorrhizal fungi, In: Powell, C.L. and Bagyaraj, D.J. (eds) VA mycorrhiza, CRC Press, Boca Raton, 57–94 (1984)
  69. Koske R.E. and Walker C., Species of Gigaspora (Endogonaceae) with roughned outer walls, Mycologia, 77, 702-720 (1985)
  70. Schenck N.C. and Pérez Y., Manual for the identification of VA mycorrhizal fungi, University of Florida, Gainesville, 2nd edition, (1988)
  71. Taylor T.N., Remy W., Hass H. and Kerp H., Fossil arbuscular mycorrhizae from the Early Devonian, Mycologia, 87, 560–573 (1995)
  72. Phipps C.J. and Taylor T.N., Mixed arbuscular mycorrhizae from the Triassic of Antartica, Mycologia., 88, 707–714 (1996)
  73. Oehl F., Silva G.A., Goto B.T. and Sieverding E., Glomeromycota: three new genera and glomoid species reorganized, Mycotaxon., 116, 75–120 (2011a)
  74. Schubler A. and Walker C., The Glomeromycota: a species list with new families and genera, Arthur Schüßler and Christopher Walker, Gloucester. Published in December 2010 in libraries at The Royal Botanical Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University, (2010)
  75. Kaonongbua W., Morton J.B. and Bever J.D., Taxonomic revision transferring species in Kuklospora to Acaulospora (Glomeromycota) and a description of Acaulospora colliculosa sp. nov. from field collected spores, Mycologia., 102, 1497–1509 (2010)
  76. Morton J.B. and Msiska Z., Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera, Mycorrhiza, 20, 483–496 (2010)
  77. Oehl F., Silva G.A., Goto B.T., Maia L.C. and Sieverding E., Glomeromycota: two new classes and a new order, Mycotaxon, 116, 365–379 (2011b)
  78. Oehl F., Silva D.K.A., Maia L.C., Sousa N.M.F., Vieira H.E.E. and Silva G.A., Orbispora gen, Nov, ancestral in the Scutellosporaceae (Glomeromycetes), Mycotaxon, 116,161–169 (2011c)
  79. Oehl F., Silva, G.A., Sánchez-Castro I., Goto B.T., Maia, L.C., Vieira, H.E.E., Barea J.M., Sieverding E. and Palenzuela J., Revision of Glomeromycetes with entrophosporoid and glomoid spore formation with three new genera
  80. Redecker D., Arthur Schüßler, Herbert Stockinger, Sidney L. Stürmer, Joseph B. Morton and Christopher Walker., An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota), Mycorrhiza, 23, 515–531 (2013)
  81. Harrison M.J. and Van Buuren M.L., A phosphate transporter from the mycorrhizal fungus Glomus versiforme, Nature, 378, 26–629 (1995)
  82. Harrier L.A., The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension, Journal of Experimental Botany, 52, 469–478 (2001)
  83. Van Duin W.E., Rozema J. and Ernst W.H., Seasonal and spatial variation in the occurrence of vesicular–arbuscular (VA) mycorrhiza in salt marsh plants, Agriculture, Ecosystem and Environment, 29, 107–110 (1989)
  84. Entry J.A., Rygiewicz P.T., Watrud L.S. and Donnelly P.K., Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas, Advances in Environmental Research, 7, 123-138 (2002)
  85. Troeh Z.I. and Loynachan T.E., Endomycorrhizal fungal survival in continuous corn, soybean and fallow, Agronomy Journal, 95, 224–230 (2003)
  86. Azcón-Aguilar C. and Barea J.M., Saprophytic growth of arbuscular mycorrhizal fungi, In: Hock, B., Varma, A. (Eds.), A. Mycorrhiza Structure, Function, Molecular biology and Biotechnology, Springer, Heidelberg, Germany, pp. 391–407 (1995)
  87. Newsham K.K., Fitter A.H. and Waterson A.R., Arbuscular mycorrhiza protect annual grass from root pathogenic fungi in the field, Journal of Ecology, 83,991-1000 (1995)
  88. Subramanian K.S. and Charest C., Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at teaselling, Mycorrhiza, 7, 25–32 (1997)
  89. Al-Karaki G.N., Benefit, cost, and phosphorus use efficiency of arbuscular mycorrhizal field-grown garlic at different soil phosphorus levels, J Plant Nutr., 25, 324–344 (2002)
  90. Al-Karaki G., McMichael B. and Zak J., Field response of wheat to arbuscular mycorrhizal fungi and drought stress, Mycorrhiza, 14, 263–269 (2004)
  91. Marschener H. and Dell B., Nutrient uptake in mycorrhizal symbiosis, Plant and Soil, 159,89–102 (1994)
  92. Smith S.E. and Read D.J., Mycorrhizal Symbiosis, third ed. Academic Press, New York (2008)
  93. Facelli E. and Facelli J.M., Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra-specific competition and size distribution, Oecologia, 133,54-61 (2002)
  94. Tibbett M., Roots, foraging and the exploitation of soil nutrient patches: the role of mycorrhizal symbiosis, Funct. Ecol., 14,397-399 (2000)
  95. Hodge A., Campbell C.D. and Fitter A.H., An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material, Nature, 413, 297-299 (2001)
  96. Hodge A. and Fitter A.H., Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling, PNAS 107, 13754-13759 (2010)
  97. Smith S.E. and Smith F.A., Mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales, Annu. Rev. Plant Biol., 62, 227-250 (2011)
  98. Caravaca F., Figueroa D., Azcon-Aguilar C., Barea J.M. and Roldan A., Mediumterm effects of mycorrhizal inoculation and composted municipal waste addition on the establishment of two Mediterranean shrub species under semiarid field conditions, Agric. Ecosyst. Environ., 97, 95-105 (2003)
  99. Puschel D., Rydlova J., Sudova R. and Gryndler M., Cultivation of flax in spoilbank clay: mycorrhizal inoculation vs. high organic amendments, J. Plant Nutr. Soil Sci., 171, 872-877 (2008)
  100. Roldan A., Carrasco L. and Caravaca F., Stability of desiccated rhizosphere soil aggregates of mycorrhizal Juniperus oxycedrus grown in a desertified soil amended with a composted organic residue, Soil Biol. Biochem., 38, 2722-2730 (2006)
  101. Abbott L.K. and Robson A.D., The effect of mycorrhizae on plant growth, In: Powell, C.L., Bagyaraj, D.J. (Eds.), VA Mycorrhiza, CRC Press, Boca Raton, 113–130 (1984)
  102. Lambert D., Baker H. and Cole H., The role of mycorrhizae in the interactions of phosphorus with zinc, copper, and other elements, Soil Sci. Soc. Am. J., 43,976–980 (1979)
  103. Smith S.E., Smith F.A. and Jakobsen I., Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake, New Phytol., 162, 511–524 (2004)
  104. Facelli E.A., Smith S.E. and Smith F.A, Mycorrhizal symbiosis – overview and new insights into roles of arbuscular mycorrhizas in agro- and natural ecosystems, Australas, Plant Pathol., 38, 338–344 (2009)
  105. Leigh, J., Hodge, A. and Fitter, A.H., Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material, New Phytol., 181, 199–207 (2009)
  106. Smith S.E. and Smith F.A., Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth, Mycologia, 104, 1–13 (2012)
  107. Al Karaki G.N. and Clark R.B., Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress, J. Plant Nutr., 21, 263-276 (1998)
  108. Ryan, M.H. and Angus, J.F., Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Znuptake but no increase in P-uptake or yield, Plant and Soil, 250, 225–239 (2003)
  109. Seres A., Bakonyi G. and Posta K., Zn uptake by maize under the influence of AM-fungi and Collembola Folsomia candida, Ecol. Res., 21, 692–697 (2006)
  110. Toler H.D., Morton J.B. and Cumming J.R., Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc, Plant and Soil, 164, 155–172(2005)
  111. Kim K., Yim W., Trivedi P., Madhaiyan M., Deka Boruah H.P. and Islam M.R. et al., Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.), Plant and Soil, 327, 429–440 (2009)
  112. Ryan M., Derrick J. and Dann P., Grain mineral concentrations and yield of wheat grown under organic and conventional management, J. Sci. Food Agric., 84, 207–216 (2004)
  113. Clark R.B. and Zeto S.K., Mineral acquisition by arbuscular mycorrhizal plants, J. Plant Nutr., 23, 867–902 (2000)
  114. Karagiannidis N., Nikolaou N., Ipsilantis I., Zioziou E., Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition, Mycorrhiza, 18, 43–50 (2007)
  115. Javaid A., Arbuscular mycorrhizal mediated nutrition in plants, J. Plant Nutr., 32, 1595–1618 (2009)
  116. Veresoglou S.D., Shaw L.J. and Sen R., Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil, Plant and Soil, 340, 481–490 (2010)
  117. Gao X., Kuyper T.W., Zou C., Zhang F. and Hoffland E., Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal, Plant and Soil, 290, 283–291 (2007)
  118. Li H., Smith F.A., Dickson S., Holloway R.E. and Smith S.E., Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain?, New Phytol., 178, 852–862 (2008)
  119. Aryal U.K., Xu H.L. and Fujita M., Rhizobia and AM fungal inoculation improve growth and nutrient uptake of bean plants under organic fertilization, J. Sustain. Agric., 21, 29–41 (2003)
  120. Trappe J.M. and Berch S.M., The prehistory of mycorrhizae: A.B. Frank’s predecessors, In: Proceedings of the 6th North American conference on mycorrhizae, Forest Research Laboratory, Oregon State University, Corvallis, Ore., 2–11 (1985)
  121. Auge R.M., Water relations, drought and vesiculararbuscular mycorrhizal symbiosis, Mycorrhiza, 1, 3-42 (2001)
  122. Sikora R.A., Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes, Annu. Rev. Phytopathol., 30, 245-270 (1992)
  123. Torres-Barragan A., Zavale-Tamejia E., GonzalezChavez C. and Ferrera-Cerrato R., The use of arbuscular mycorrhizae to control onion white rot (Sclerotium ceviporum Berk.) under field conditions, Mycorrhiza, 6, 253-257 (1996)
  124. Guillemin J.P., Gianinazzi S., Gianinazzi-Pearson V. and Marchal J., Contribution of arbuscular mycorrhizas to biological protection of micropropagated pineapple (Ananas comosum (L.) Merr.) against Phytophthora cinnamomi Rands, Agric. Sci. Finland, 3, 241-251 (1994)
  125. Azcón-Aguilar C. and Barea J.M., Arbuscular mycorrhizas and biological control of soil-born plant pathogens-an overview of the mechanisms involved, Mycorrhiza, 6, 457-464 (1996)
  126. Pozo M.J., Azcón-Aguilar C., Dumas-Gaudot E. and Barea J.M., b-1,3-glucanaseactivities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection, Plant Sci., 141, 149-157 (1999)
  127. Idoia G., Nieves G. and Jone A., Plant phenology influences the effect of mycorrhizal fungi on the development of Verticillium-induced wilt in pepper, European J. Plant Pathol., 110, 227-238 (2004)
  128. Vestberg M., Palmujoki H., Parikka P. and Uosukainen M., Effect of arbuscular mycorrhizas on crown rot (Phytophthora cactorum) in micropropagated strawberry plants, Agric. Sci. Finland, 3, 289-295 (1994)
  129. Barrett G., Campbell C. D. and Hodge A., The direct response of the external mycelium of arbuscular mycorrhizal fungi to temperature and the implications for nutrient transfer, Soil Biology and Biochemistry, 109-117(2014)
  130. Krishna H., Singh S.K., Sharma R.R., Khawale R.N., Grover M. and Patel V.B., Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular mycorrhizal fungi (AMF) inoculation during ex vitro acclimatizatio, Sci. Hort., 106, 554-567 (2005)
  131. Nogales A., Aguirreolea J., Maria E.S., Camprubi A. and Calvet C., Response of the grapevine rootstock Richter 110 to inoculation with native and selected arbuscular mycorrhizal fungi and growth performance in a replant vineyard, Plant and Soil, 317, 177-187 (2009)
  132. Azcón-Aguilar C., Jaizme-Vega M.C. and Calvet C., The contribution of arbuscular mycorrhizal fungi for bioremediation, In: Gianinazzi, S., Schuepp, H., Barea, J.M., Haselwandter, K. (Eds.), Mycorrhizal Technology in Agriculture: From Genes to Bioproducts. Birkhäuser Verlag, Basel, 187-197 (2002)
  133. Augé R.M., Water relations, drought and vesiculararbuscular mycorrhizal symbiosis, Mycorrhiza, 11, 3-42 (2004)
  134. Wu Q.S. and Xia R.X., Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions, Journal of Plant Physiology, 163, 417–425 (2006)
  135. Heidari M. and Karami V., Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress, Journal of the Saudi Society of Agricultural Sciences, 13, 9–13 (2014)
  136. Boomsma C.R. and Vyan T.J., Maize drought tolerance: Potential improvement s through arbuscular mycorrhiza symbiosis?, Field Crops Research, 108, 14–31 (2008)
  137. Sylvia D.E., Hammond L.C., Bennet J.M., Hass J.H., Linda S.B., Field response of maize to a VAM fungus and water management, Agron. J., 85, 193–198 (1993)
  138. Ruiz-Lozano J.M., Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies, Mycorrhiza, 13, 309–317 (2003)
  139. Sa´nchez-Dı´az M. and Honrubia M., Water relations and alleviation of drought stress in mycorrhizal plants, In: Gianinazzi, S., Schu¨ epp, H. (Eds.), Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems
  140. Leyval C., Turnau K. and Haselwandter K., Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects, Mycorrhiza, 7, 139–153 (1997)
  141. Gaur A. and Adholeya A., Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils, Curr. Sci., 86, 528–534 (2004)
  142. Barea J. M., Calvet C., Esta´un V. and Camprubi A., Biological control as a key component in sustainable agriculture, Plant and Soil., 185,171–172 (1996)
  143. Bashan Y., Davis E.A., Carrillo-Garcia, A. and Linderman R.G., Assessment of VA mycorrhizal inoculums potential in relation to the establishment of cactus seedlings under mesquite nurse-trees in the Sonoran Desert, Appl. Soil Ecol., 14, 165–175 (2000a)
  144. Cantrell I.C. and Linderman R.G., Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity, Plant and Soil, 233,269–281 (2001)
  145. Feng G., Zhang F.S., Li X. L., Tian C.Y., Tang, C. and Rengel Z., Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots, Mycorrhiza, 12, 185–190 (2002)
  146. Zhu X.C., Song F.B. and Xu H.W., Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis, Plant and Soil, 331, 129–137 (2010)
  147. Rillig, M.C. and Mummey, D.L., Mycorrhizas and soil structure, New Phytol., 171, 41–53 (2006)
  148. Ibijbijen, J., Urquiaga, S., Ismaili, M., Alves, B.J.R. and Boodey, R.M., Effect of arbuscular mycorrhizas on uptake of nitrogen by Brachiaria arrecta and Sorghum vulgare from soils labelled for several years with 15N, New Phytol., 133, 487–494 (1996)
  149. Smith S.E., Read D.J., Mycorrhizal Symbiosis, 2nd ed, Academic Press, London, 605 (1997)
  150. Garmendia I., Goicoechea N., Aguireolea J., Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against verticillium wilt, Biol. Control, 31,296–305 (2004)
  151. Brundrett M., Mycorrhizas in natural ecosystem, Adv. Ecol. Res., 21, 171-313 (1991)
  152. Declerck S., Plenchette C., Strullu D.G., Mycorrhizal dependency of banana (Musa acuminate AAA group) cultivar, Plant and Soil, 176, 183-187 (1995)
  153. Turkmen O., Demir S., Sensoy S. and Dursun A., Effects of arbuscular mycorrhizal fungus and humic acid on the seedling development and nutrient content of pepper grown under saline soil conditions, J. Biol. Sci., 5(5), 568–574 (2005)
  154. Reeves F.B., Wagner D., Moorman T. and Kiel J., The role of endomycorrhizae in revegetation practices in the semi-arid west. I. A comparison of incidence of mycorrhizae in severely disturbed vs. Natural environments, American Journal of Botany, 66, 6–1(1979)
  155. Brundrett M.C., Coevolution of roots and mycorrhizas of land plants, New Phytologist, 154(2), 275-304 (2002)
  156. Redecker D., Kodner R. and Graham L.E., Glomalean fungi from the Ordovician, Science, 289(5486), 1920-1921 (2000)
  157. Wang B. and Qiu Y.L., Phylogenetic distribution and evolution of mycorrhizas in land plants, Mycorrhiza, 16(5), 299-363 (2006)
  158. Finlay R.D., Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium, J Exp Bot, 59, 1115–1126 (2008)
  159. Ruissen M.A., Diversity of arbuscular mycorrhizal fungi in Norwegian agriculture: a pilot study, Agarica, 33, 117-123 (2013a)
  160. Ruissen T., Arbuscular mycorrhizal fungi and their ecological roles: a review with a Norwegian perspective, Agarica, 33, 105-116 (2013b)
  161. Barrett G., Campbell C.D., Fitter A.H. and Hodge A., The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature, Applied Soil Ecology, 48(1), 102-105 (2011)
  162. Tobar R.M., Azcon R. and Barea J.M., The Improvement of Plant N Acquisition from an Ammonium-Treated, Drought-Stressed Soil by the Fungal Symbiont in Arbuscular Mycorrhizae, Mycorrhiza, 4(3), 105-108 (1994)
  163. Gianinazzi S., Gollotte A., M. Binet M.N., Van Tuinen D., Redecker D. and Wipf, D., Agroecology: the key role of arbuscular mycorrhizas in ecosystem services, Mycorrhiza, 20(8), 519-530 (2010)
  164. Rillig M.C. and Mummey D.L., Mycorrhizas and soil structure, New Phytol., 171, 41–53 (2006)
  165. Wright S.F. and Upadhyaya A., A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi, Plant and Soil, 198(1), 97-107 (1998)
  166. Rillig M.C., Wright S.F., Kimball B.A., Pinter P.J., Wall G.W., Ottman M.J. and Leavitt S.W., Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi, Global Change Biology, 7(3), 333-337 (2001)
  167. Barto E.K., Weidenhamer J.D., Cipollini D. and Rillig M.C., Fungal superhighways: do common mycorrhizal networks enhance below ground communication?, Trends in Plant Science, 17(11),633-637 (2012)
  168. Mendgen K. and Hahn M., Plant infection and the establishment of fungal biotrophy, Trends in Plant Science, 7(8), 352-356 (2002)
  169. Whipps J.M., Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany-Revue Canadienne de Botanique, 82(8), 1198-1227 (2004)
  170. Garmendia I., Aguirreolea J. and Goicoechea N., Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahlia, Biocontrol, 51(3), 293-310 (2006)
  171. Li B., Ravnskov S., Xie G.L. and Larsen J., Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus, Biocontrol, 52(6), 863-875 (2007)
  172. Giovannetti M., Azzolini D. and Citernesi A.S., Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi, Applied and Environmental Microbiology, 65(12), 5571-5575 (1999)
  173. Croll D., Giovannetti M., Koch A.M., Sbrana C., Ehinger M., Lammers P.J. and Sanders, I.R., Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices, New Phytologist, 181(4), 924-937 (2009)
  174. Angelard C., Colard A., Niculita-Hirzel H., Croll D. and Sanders I.R., Segregation in a Mycorrhizal Fungus Alters Rice Growth and Symbiosis- Specific Gene Transcription, Current Biology, 20(13), 1216-1221 (2010)
  175. Angelard C. and Sanders I.R., Effect of segregation and genetic exchange on arbuscular mycorrhizal fungi in colonization of roots, New Phytologist, 189(3),652-657 (2011)
  176. Ehinger M.O., Croll D., Koch A.M. and Sanders I.R., Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations, New Phytologist, 196(3), 853-861 (2012)
  177. Walder F., Niemann H., Natarajan M., Lehmann M.F., Boller T. and Wiemken A., Mycorrhizal Networks: Common Goods of Plants Shared under Unequal Terms of Trade, Plant Physiology, 159(2),789-797 (2012)
  178. Davison J., Öpik M., Daniell T.J., Moora M. and Zobel M., Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages, FEMS Microbiology Ecology, 78(1), 103-115 (2011)
  179. Davison J., Öpik M., Zobel M., Vasar M., Metsis M. and Moora M., Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season, Plos One 7(8) Open Access DOI: 10.1371/journal.pone.- 0041938 (2012)
  180. Rinaudo V., Barberi P., Giovannetti M. and Van der Heijden M.G.A., Mycorrhizal fungi suppress aggressive agricultural weeds, Plant and Soil, 333(1-2),7-20 (2010)
  181. Veiga R.S.L., Jansa J., Frossard E. and Van der Heijden M.G.A., Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds?, Plos One 6(12) Open Access DOI: 10.1371/journal.pone, 0027825 (2011)
  182. Marler M.J., Zabinski C.A. and Callaway R.M., Mycorrhizae indirectly enhance competitive effects of an invasive for on a native bunchgrass, Ecology, 80(4), 1180-1186 (1999)
  183. Sykorova Z., Ineichen K., Wiemken A. and Redecker D., The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment, Mycorrhiza, 18(1), 1-14 (2007)
  184. Mortier F., Tacon F. and Garbaye J., Effects of inoculum type and inoculation dose on ectomycorrhizal development, root necrosis and growth of Douglas fir seedlings inoculated with Laccaria laccata in a nursery, Ann. Sci. For., 45, 301-310 (1988)
  185. Raaijmakers J.M., Leeman M., van Oorschot M.M.P., van der Sluis, I., Schippers, B., Bakker, A.H.M., Doseresponse relationships in biological control of fusarium wilt of radish by Pseudomonas spp, Phytopathology, 85, 1075-1081 (1995)
  186. Chin-A-Woeng T.F.C., de Priester W., van der Bij A.J. and Lugtenberg B.J.J., Description of the colonization of agnotobiotic tomato rhizosphere by Pseudomonas fluorescens bio-control strain WC365, using scanning electron microscopy, Molecular Plant Microbe Interactions, 10,79-86 (1997)
  187. Bull C.T., Weller D.M. and Thomashow L.S., Relationship between root colonization and suppression of Gaeumannomyces graminis var tritici by Pseudomonas fluorescens and P. putida, Phytopathology, 81, 954-959 (1991)
  188. Kapulnik Y., Okon Y. and Henis Y., Changes in root morphology of wheat caused by Azospirillum inoculation, Canadian Journal of Microbiology, 31, 881- 887 (1985)
  189. Bashan Y., Moreno M. and Troyo E., Growth promotion of the oilseed halophyte Salicornia bigelovii in seawater inoculated with mangrove rhizosphere bacteria and Azospirillu, Biol. Fertil. Soils, 32, 265–272 (2000b)
  190. Frey-Klett P., Chavatte, M., Clausse M.L., Courrier S., Le Roux C., Raaijmakers J., Martinotti M.G., Pierrat J.C. and Garbaye J., Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads, New Phytol, 165, 317–328 (2005)
  191. Varma A., Padh H. and Shrivastava N., Plant genomic DNA isolation: an art or a science, Biotechnology Journal, 2, 386–392 (2007)
  192. Srivastava K.K., Srivastava H.P. and Kumar S., Standardization of inoculum dose in Tecomella undulate seedlings, Indian Forester, 130(11), 1316-1318 (2004)
  193. Kavitha K., Mathiyazhagan S., Senthilvel V., Nakkeeran S. and Chandrasekar G., Development of bioformulations of antagonistic bacteria for the management of damping off chilli (Capsicum annum L.), Arch. Phytopath. Plant Prot., 38(1), 19-30 (2005)
  194. Eissenstat D.M., Graham J.H., Syvertsen J.P. and Drouiu D.L., AIlD: Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status, Annals of Botany, 71, 1-10 (1993)
  195. Rathore V., Shekhawat N.S., Singh R.P., Rathore J.S. and Dagla H.R., Cloning of adult trees of jamun (Syzygium cuminii), Indian J Biotechnol, 3, 241–245 (2004)
  196. Mathur N. and Vyas A., Influence of VA Mycorrhizae on Net Photosynthesis and Transpiration of Ziziphus mauritiana, J. Plant Physiol., 147,328-330 (1995)
  197. Rajasekaran P. and Nagarajan S.M., Effect of dual inoculation (AM fungi and Rhizobium) on chlorophyll content of Vigna unguiculata L, Mycorrhiza News, 17, 10–11 (2005)
  198. Thaker M.N. and Fasrai Y.T., VAM and better growth of micropropagated banana, Mycorrhiza News, 14, 16–18 (2002)
  199. Farshian, S., Khara, J. and Malekzadeh, P., Influence of arbuscular mycorrhizal fungus (Glomus etunicatum) with lettuce plants under zinc toxicity in nutrient solution, Pak. J. Biol. Sci., 15, 2363–2367 (2007)
  200. Azam K.J.A. and Jalil K., Effects of arbuscular mycorrhizal fungus (Glomus veruciforme) on changes of some physiological parameters in cadmium treated wheat plants, Pak. J. Biol. Sci., 10,4279–4282 (2007)
  201. Dutt S., Sharma S.D. and Pramod K., Arbuscular mycorrhizas and Zn fertilization modify growth and physiological behavior of apricot (Prunus armeniaca L.), Scientia Horticulturae, 155, 97-104 (2013)
  202. Abbaspour H., Saeidi-Sar S., Afshari H. and AbdelWahhab M.A., Tolerance of Mycorrhiza infected Pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions, Journal of Plant Physiology, 169(7), 704–709 (2012)
  203. Green N.E., Graham S.O. and Schenck N.C., The influence of pH on the germination of vesicular arbuscular mycorrhizal spores, Mycologia, 68, 929 (1976)
  204. Gerdemann J.W. and Trappe J.M., The Endogonaceae in the Pacific Northwest, Mycol Mem., 5, 1–76 (1974)
  205. Graw D., The influence of soil pH on the efficiency of vesicular arbuscular mycorrhizae, New Phytol., 82, 687-695 (1979)
  206. Daniels B.A. and Trappe J.M., Factors affecting spore germination on the vesicular arbuscular mycorrhizal fungus, Glomus epigaeus, Mycologia, 72, 457 (1980)
  207. Koske R.E., A preliminary study of interactions between species of vesicular arbuscular fungi in a sand dune, Trans. Br. Mycol. Soc., 76, 411-416 (1981)
  208. Furlan V. And Fortin J.A., Effect of light intensity on the formation of vesicular arbuscular endomycorrhizas on Allium cepa by Gigaspora calospora, New Phytol., 79, 335 (1973)
  209. Hayman, D.S., Plant growth response to vesiculararbuscular mycorrhiza. VI. Effect of light and temperature, New Phytol, 73, 71–80 (1974)
  210. Mikanova, O., Kubat, J., Mikhalovskoya, N. and Biro, B., Influence of heavy metal pollution on some biological parameters in the alluvium of the Litavka river, Rostlinna Vyroba, 47(3), 117-122 (2001)
  211. Menge J., Steirle D., Bagyaraj D.J., Johnson E.L.V. and Leonard R.T., Phosphorus concentration in plants responsible for inhibition of mycorrhizal infection, New Phytol., 80, 575 (1978)
  212. Shekhawat N.S., Rathore T.S., Singh R.P., Deora N.S. and Rao S.R., Factors affecting in vitro cloning of Prosopis cineraria, Plant Growth Regul., 12, 273–280 (1993)
  213. Shekhawat N.S., Singh R.P., Deora N.S., Kaul G., Kotwal R.C. and Choudhary N., Micropropagation of plants of stressed ecosystems, In: Shrivastava, P.S., editor. Plant Tissue Culture and Molecular Biology: Application and prospects. New Delhi: Narosa, 579–586 (1998)
  214. Ferguson J.J., Inoculum production and field application of vesicular arbuscular mycorrhizal fungi, PhD. Thesis, University of California, Riverside, (1981)
  215. Mago P. and Mukerji K.G., Vesicular arbuscular mycorrhizae in Lamiaceae. I. Seasonal variation in some members, Phytomorphology, 44, 83-88 (1994)
  216. Kruckelmann H.W., Effect of fertilizers, soils, soil tillage and plant species on the frequency of Endogone chlamydospores and mycorrhizal infections in arable soils, In: Endomycorrhizas. (eds. Sanders, F.E., Mosse, B. And Tinker, P.B.). Academic Press, London, 511 (1975)
  217. Schenck N.C. and Kinloch R.A., Incidence of mycorrhizal fungi on six field crops in monoculture on a newly cleared woodland site, Mycologia, 72, 445 (1980)
  218. Hiltner L., Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache, Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 98, 59–78 (1904)
  219. Smith S.E. and Walker N.A., A quantitative study of mycorrhizal infection in Trifolium: separate determination of the rates of infection and of mycelial growth, New Phytol., 89, 225-240 (1981)
  220. Requena N., Serrano E., Oco’n E. and Magdalene B., Plant signals and fungal perception during arbuscular mycorrhiza establishment, Phytochemistry, 68, 33-40 (2007)
  221. Rose S.L., Perry D.A., Pilz D. and Schoeneberger M.M., Allelopathic effects of litter on the growth and colonization of mycorrhizal fungi, J. Chem. Ecol. 9,1153-1162 (1983)
  222. Quatrini P., Scaglione G., Incannella G., Badalucco L., Puglia A.M. and Mantia T.La., Microbial inoculants on woody legumes to recover a municipal landfill site, Water Air Sea Poll., 3, 189–199 (2003)
  223. Sharma M.P., Bhatia N.P. and Adholeya A., Mycorrhizal dependency and growth responses of Acacia nilotica and Albizzia lebbeck to inoculation by indigenous AM fungi as influenced by available soil P levels in a semi-arid Alfisol wasteland, New Forests, 21, 89–104 (2001)
  224. Laurent F.M., Leea, S.K., Thama F.Y., Jiea He and Diemc H.G., Aeroponic production of Acacia mangium saplings inoculated with AM fungi for reforestation in the tropics, Forest Ecology and Management, 122, 199-207 (1999)
  225. Udaiyan K., Sugavanam V. and Manian S., Growth response of wattle (Acacia mearnsii) seedlings to phosphorus fertilization and inoculations with Glomus desertifolia and Rhizobium sp. in non-sterile soil, J. trop. Forest Sci., 10, 212-224 (1997), undefined
  226. Sharma M.P., Gour A., Bhatia N.P. and Adholeya A., Growth responses and dependence of Acacia nilotica var. cupriciformis on the indigenous arbuscular mycorrhizal consortium of a marginal wasteland soil, Mycorrhiza, 6, 169-177 (1996)
  227. Munroa R.C., Wilsona J., Jefwab J. and Mbuthia K.W., A low-cost method of mycorrhizal inoculation improves growth of Acacia tortilis seedlings in the nursery, Forest Ecology and Management, 113, 51-56 (1999)
  228. Raj Harender and Sharma S.D., Integration of soil solarization and chemical sterilization with beneficial microorganisms for the control of white root rot and growth of nursery apple, Scientia Horticulturae, 119,126-131 (2009)
  229. Lesueur D., Ingleby K. and Odee D. et al., Improvement of forage production in Calliandra calothyrsus: methodology for the identification of an effective inoculums containing Rhizobium strains and arbuscular mycorrhizal isolates, J Biotechnol, 91, 269–282 (2001)
  230. Ananthakrishnan G., Ravikumar R., Girija S. and Ganapathi A ., .Short communication. Selection of efficient arbuscular mycorrhizal fungi in the rhizosphere of cashew and their application in the cashew nursery, Scientia Horticulturae, 100, 369–375 (2004)
  231. Piao He C., Liu Cong Q. and Wang Shi Jie., Isotopic evaluation of the role of arbuscular mycorrhizae in the nitrogen preference in Chinese fir seedlings, Pedobiologia, 55, 167-174 (2012)
  232. Raj Harender and Sharma S.D., Combination of soil solarization, vesicular-arbuscular mycorrhiza and Azotobacter chrococcum for the management of seedling wilt of citrus, Indian Phytopathology, 63(3), 282-285 (2010)
  233. Wu Q.S., Srivastava A.K. and Zou Y.N., AMF-induced tolerance to drought stress in citrus: a review, Sci. Hortic., 164,77–87 (2013)
  234. Singh A.K., Chand S., Pattnaik S. and Chand P.K., Adventitious shoot organogenesis and plant regeneration from cotyledons of Dalbergia sissoo Roxb, a timberyielding tree legume, Plant Cell Tissue Organ Cult., 68, 203–209 (2002)
  235. Sharma M.P. and Adholeya A., Response of Eucalyptus tereticornis to inoculation with indigenous AM fungi in a semiarid alfisol achieved with different concentrations of available soil P, Microbiol. Res., 154, 349-354 (2000)
  236. Koffa S.N. and De-La-Cruz R.E., Green house performance of VAM inoculated seedlings of Leucaena leucocephala (Lamk.) de wit. In a phosphorus-deficient and aluminium sulphate treated medium, New Forest, 9,273-279 (1995)
  237. Sorianoa A.P., Martına M.L.S., Piedraa A.P. and Azconb R., Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions, Journal of Plant Physiology, 166, 1350-1359 (2009)
  238. Abbaspour H., Saeidi-Sar S. and Afshari H., Improving drought tolerance of Pistacia vera L. seedlings by arbuscular mycorrhiza under greenhouse conditions, Journal of Medicinal Plants Research, 5, 7065-7072 (2011)
  239. Venkatesh A., Mallika V., Vanangamudi K., Ravichandran V. and Rai R.S.V., Impact of biofertilizers on morpho-physiological attributes in pongam (Pongamia pinnata (Linn.) Pierre) seedlings, Trop. Agric. Res. Ext. 1, 7-11 (1998)
  240. Vallejoa V.E., Arbeli Z., Terán W., Lorenz N., Dick R.P. and Roldan F., Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia, Agriculture, Ecosystems and Environment, 150, 139–148 (2012)
  241. Binu N.K., Ashokan P.K. and Balasundaran M., Influence of different Arbuscular mycorrhizal (AM) fungi and shade on the growth of sandal (Santalum album Linn.) seedlings, Journal of Tropical Forest science, 27(2), 158-165 (2015)
  242. Durga V.V.K. and Gupta S., Effect of vescicular arbuscular mycorrhizae on the growth and mineral nutrition of teak (Tectona grandis), Indian Forester, 121, 518-529 (1995)
  243. Lerat S., Lapointe L., Piche Y. and Vierheilig H., Variable carbon-sink strength of different Glomus mosseae strains colonizing barley roots, Can. J. Bot., 81, 886–889 (2003)
  244. Fitter A.H., Specificity, links and networks in the control of diversity in plant and microbial communities, Ecology. Achievement and Challenge (ed. M. C. Press, N. J. Hontly & S. Levin), pp. 95-114. Blackwell Science, Oxford, (2001)
  245. Thompson, J.P., Decline of vesicular arbuscular mycorrhizae in long fallow disorder of fild crops and its expression in phosphorus deficiency of sunflower, Aust. J. Agric. Res., 38, 847–867 (1987)
  246. Thompson J.P., Improving the mycorrhizal condition of the soil through cultural practices and effects on growth and phosphorus uptake by plants, In: Johansen, C., Lee, K.K. and Sahrawat, K.L. (eds) Phosphorus nutrition of grain legumes in the semiarid tropics. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India, 117–137 (1991)
  247. Thompson J.P., Inoculation with vesicular-arbuscular mycorrhizal fungi from cropped soil overcomes longfallow disorder of linseed (Linum Usitatissium L.) by improving P and Zn uptake, Soil Biol and Biochem, 26(9), 1133-1143 (1994)
  248. Monzon A. and Azcon R., Relevance of mycorrhizal fungal origin and host plant genotype to inducing growth and nutrient uptake in Medicago species, Agric. Ecosyst. Environ., 60, 9–15 (1996)
  249. Bever J.D., Pringle A. and Schultz P.A., Dynamics within the plantarbuscular mycorrhizal fungal mutualism: testing the nature of community feedback, In: van der Heijden, M.G.A. and Sanders, I.R. (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, 267– 292 (2002)
  250. Van der Heijden M.G.A., Streitwolf-Engel, R., Riedl, R., Siegrist, S., Neudecker, A. and Ineichen, K., The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland, New Phytol., 172, 739–752 (2006)
  251. O’Connor P.J., Smith S.E. and Smith F.A., Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland, New Phytol., 154, 209– 218 (2002)
  252. Munkvold L., Kjøller R., Vestberg M., Rosendahl S. and Jakobsen I., High functional diversity within species of arbuscular mycorrhizal fungi, New Phytol, 164, 357–364 (2004)
  253. Piotrowski J.S., Denich T., Klironomos J.N., Graham J.M. and Rillig M.C., The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species, New Phytol., 164, 365–373 (2004)
  254. Miller R.L. and Jackson L.E., Survey of Vesicular Arbuscular Mycorrhizae in Lettuce Production in Relation to Management and Soil Factors, The Journal of Agricultural Science, 130, 173-182 (1998)
  255. Liu W.T., Mirzaberok A.D., Stahl, D.A., Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach, Environ. Microbiol. 3, 619–629 (2001)
  256. Burrows R. and Pfleger F., Arbuscular mycorrhizal fungi respond to increasing plant diversity, Canadian Journal of Botany/Revue Canadien de Botanique, 80, 120-130 (2002)
  257. Treseder K.K. and Allen M.F., Direct Nitrogen and Phosphorus Limitation of Arbuscular Mycorrhizal Fungi: A Model and Field Test, New Phytologist, 155, 507-515 (2002)
  258. Ryan M.H. and Ash J., Effects of phosphorus and nitrogen on growth of pasture plants and VAM fungi in SE Australian soils with contrasting fertiliser histories (conventional and biodynamic), Agric. Ecosyst. Environ., 73, 51–62 (1999)
  259. Jumpponen A., Trowbridge J., Mandyam K. and Johnson L., Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition evidence from rDNA data, Biol. Fertil. Soil, 41, 217–224 (2005)
  260. Pasolon Y.B., Hirata H. and Barrow N.J., Effect of White Clover (Trifolium repens L.) Intercropping on Growth and Nutrient Uptake of Upland Rice (Oryza sativa L.) in Relation to VA Mycorrhizae and Soil Fertility, Developments in Plant and Soil Sciences, 54, 331-334 (1993)
  261. Douds D.D. and Millner P., Biodiversity of arbuscular mycorrhizal fungi in agroecosystems, Agr. Ecosyst. Environ., 74, 77–93 (1999)
  262. Jordan N.R., Zhang J. and Huerd S., Arbuscular mycorrhizal fungi: Potential roles in weed management, Weed Research, 40, 397–400 (2000)
  263. Veeraswamy J., Padmavathi T. and Venkateswarlu K., Effect of selected insecticides on plant growth and mycorrhizal development in sorghum, Agric. Ecosyst. Environ., 43, 337–343 (1993)
  264. Pattinson G.S., Warton D.I., Misman R. and McGee P.A., The fungicides Terrazole and Terraclor and the nematicide Fenamiphos have little effect on root colonisation by Glomus mosseae and growth of cotton seedlings, Mycorrhiza, 7,155–159 (1997)
  265. Black R. and Tinker P.B., The development of endomycorrhizal root systems. II. Effect of agronomic factors and soil conditions on the development of vesicular-arbuscular mycorrhizal infection in barley and on the endophyte spore density, New Phytologist, 83(2), 401-413 (1979)
  266. Harinikumar K.M. and Bagyaraj D.J., Effect of crop rotation on native vesicular arbuscular mycorrhizal propagules in soil, Plant and Soil, 110(1), 77-80 (1988)
  267. Gavito M.E. and Miller M.H., Changes in mycorrhiza development in maize induced by crop management practices, Plant Soil, 198, 185–192 (1998a)
  268. Gavito M.E. and Miller M.H., Early phosphorus nutrition mycorrhizae development, dry matter partitioning and yield of maize, Plant Soil, 199, 177–186 (1998b)
  269. Gavito M.E. and Varela L., Response of criollo maize to single and mixed-species inocula of arbuscular mycorrhizal fungi, Plant Soil, 176, 101–105 (1995)
  270. Xavier L.J.C. and Germida J.J., Growth response of lentil and heatto Glomus clarum NT4 over a range of P levels in a Saskatchewan soil containing indigenous AM fungi, Mycorrhiza, 7, 3–8 (1997)
  271. Hamel C., Dalpé Y., Furlan V. and Parent S., Indigenous populations of arbuscular mycorrhizal fungi and soil aggregate stability are major determinants of leek (Allium porrum L.) response to inoculation with Glomus intraradices Schenck & Smith or Glomus versiforme (Karsten) Berch, Mycorrhiza, 7, 187–196 (1997)