6th International Young Scientist Congress (IYSC-2020) will be Postponed to 8th and 9th May 2021 Due to COVID-19. 10th International Science Congress (ISC-2020).  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Deciphering Genetic Basis of Complex Traits for Crop Improvement

Author Affiliations

  • 1Department of Genetics and Plant Breeding, GBPUAT, Pantnagar - 263 145, Uttarakhand, INDIA
  • 2Department of Plant Pathology, GBPUAT, Pantnagar - 263 145, Uttarakhand, INDIA
  • 3Department of Genetics and Plant Breeding, GBPUAT, Pantnagar - 263 145, Uttarakhand, INDIA
  • 4National Fertilizer Limited, INDIA

Res. J. Agriculture & Forestry Sci., Volume 1, Issue (9), Pages 14-18, October,8 (2013)

Abstract

In current biology, a greater challenge is to know the genetic basis of complex traits or quantitative traits which is controlled by the cumulative effects of quantitative trait loci (QTLs), epistasis, environment and interaction between quantitative trait locus (QTL) and environment. Availability of molecular markers and linkage maps have made it possible to understand the genetic basis of complex traits through the marker-based mapping to locate the chromosomal regions or QTLs of interest. Linkage analysis based mapping, association mapping and nested association mapping (NAM) are most commonly used methods for understanding the genetic basis underlying quantitative variation which will help in improving traits such as yield, nutritional quality and resistance to abiotic and biotic stress by developing new insights and methodologies.

References

  1. Semagn K., Bjørnstad A. and Xu Y., The genetic dissectionof quantitative traits in crops, Electron. J. Biotechnol.,13(5), 14 (2010)
  2. Lander E.S. and Botstein D., Mapping Mendelian factorsunderlying quantitative traits using RFLP linkage maps, Genetics, 121(1), 185-199 (1989)
  3. Bernardo R., Molecular markers and selection for complextraits in plants: learning from the last 20 years, CropScience., 48(5), 1649-1664 (2008)
  4. Semagn K., Bjørnstad A. and Ndjiondjop M.N., Principles,requirements and prospects of genetic mapping in plants, African Journal of Biotechnology, 5(25), 2569-2587 (2006)
  5. Jansen R.C., Interval mapping of multiple quantitative traitloci, Genetics., 135(1), 205-211 (1993)
  6. Zeng Z., Theoretical basis for separation of multiple linkedgene effects in mapping quantitative trait loci, Proceedingsof the National Academy of Sciences, 90(23), 10972-10976(1993)
  7. Zeng Z., Precision mapping of quantitative trait loci, Genetics, 136(4), 1457-1468 (1994)
  8. Kao C.H., Zeng Z. and Teasdale R.D., Multiple intervalmapping for quantitative trait loci, Genetics, 152(3), 1203-1216 (1999)
  9. Mauricio R., Mapping quantitative trait loci in plants: usesand caveats for evolutionary biology, Nat Rev Genet., 2,370–381 (2001)
  10. Price A.H., Believe it or not, QTLs are accurate, TrendsPlant Sci., 11, 213–216 (2006)11. Neale D.B. and Savolainen O., Association genetics ofcomplex traits in conifers, Trends Plant Sci., 9, 325–330(2004)
  11. Yu J. and Buckler E.S., Genetic association mapping andgenome organization of maize, Current Opinion inBiotechnology, 17(2), 155-160 (2006)
  12. Thornsberry J.M., Goodman M.M., Doebley J., KresovichS., Nielsen D. and Buckler E.S., Dwarf8 polymorphismsassociate with variation in flowering time, Nat. Genet., 28,286–289 (2006)
  13. Zhu C., Gore M., Buckler E.S. and Yu J., Status andprospects of association mapping in plants, The PlantGenome., 1(1), 5-20 (2008)
  14. Mackay T.F.C., The genetic architecture of quantitativetraits, Annu. Rev. Genet., 35, 303–339 (2001)
  15. Whitt S.R. and Buckler E.B., Using natural allelic diversityto evaluate gene function, Methods Mol Biol., 236, 123–40(2003)
  16. Hall D., Tegstrom C. and Ingvarsson P.K., Usingassociation mapping to dissect the genetic basis of complextraits in plants, Brief. Funct. Genomics., 9(2), 157-165(2010)
  17. Yu J., Holland J.B., McMullen M.D. and Buckler E.S., Genetic Design and Statistical Power of Nested AssociationMapping in Maize, Genetics, 178, 539–551 (2008)
  18. Mitchell-Olds T., Complex-trait analysis in plants, GenomeBiology, 11(4), 113 (2010)
  19. Buckler E.S., Holland J.B., Bradbury P.J., Acharya C.B.,Brown P.J., Browne C., Ersoz E., Garcia S.F., Garcia A.,Glaubitz J.C., Goodman M.M., Harjes C., Guill K., KroonD.E., Larsson S., Lepak N.K., Li H., Mitchell S. E.,Pressoir G., Peiffer J.A., Rosas M.O., Rocheford T.R.,Romay M.C., Romero S., Salvo S., Villeda H.S., SilvaH.S., Sun Q., Tian F., Upadyayula N., Ware D., Yates H.,Yu J., Zhang Z., Kresovich S. and McMullen M.D., Thegenetic architecture of maize flowering time, Science.,325(5941), 714-718 (2009)
  20. Sujay R., Arunita R. and Patil J.V., Multiparent intercrosspopulations in analysis of quantitative traits, J. Genet.,91(1), (2012)
  21. Kover P.X., Valder W., Trakalo J., Scarcelli N., EhrenreichI.M., Purugganan M.D. et al., A multiparent advancedgeneration inter–cross to fine map quantitative traits inArabidopsis thaliana, PLoS Genet., 5(7), e1000551 (2009)
  22. Atwell S., Huang Y.S., Vilhjálmsson B.J., Willems G.,Horton M., Li Y. et al., Genome-wide association study of107 phenotypes in Arabidopsis thaliana inbred lines, Nature, 465, 627–631 (2010)
  23. Falconer D.S. and Mackay T.F.C., Introduction toQuantitative Genetics (Addison Wesley Longman, Harlow),(1996)
  24. Mackay T.F.C., Stone E.A. and Ayroles J.F., The geneticsof quantitative traits: challenges and prospects, Nat. Rev.Genet., 10, 565-577 (2009)